-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathgenerators.cpp
217 lines (170 loc) · 6.35 KB
/
generators.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
#include "generators.h"
#include <vector>
#include <Physics3D/hardconstraints/motorConstraint.h>
#include <Physics3D/hardconstraints/sinusoidalPistonConstraint.h>
#include <Physics3D/geometry/convexShapeBuilder.h>
#include <Physics3D/misc/toString.h>
namespace P3D {
static std::default_random_engine generator;
int generateInt(int max) {
return std::uniform_int_distribution<int>(0, max - 1)(generator);
}
size_t generateSize_t(size_t max) {
return std::uniform_int_distribution<size_t>(0, max - 1)(generator);
}
double generateDouble() {
return std::uniform_real_distribution<double>(0.0, 2.0)(generator);
}
float generateFloat() {
return std::uniform_real_distribution<float>(0.0f, 2.0f)(generator);
}
double generateDouble(double min, double max) {
return std::uniform_real_distribution<double>(min, max)(generator);
}
float generateFloat(float min, float max) {
return std::uniform_real_distribution<float>(min, max)(generator);
}
bool generateBool() {
return std::uniform_int_distribution<int>(0, 1)(generator) == 1;
}
Shape generateShape() {
return boxShape(generateDouble(), generateDouble(), generateDouble());
}
Polyhedron generateConvexPolyhedron() {
constexpr size_t MAX_POINT_COINT = 50;
Vec3f vecBuf[MAX_POINT_COINT * 10]{generateVec3f(), generateVec3f(), generateVec3f(), generateVec3f()};
if((vecBuf[1] - vecBuf[0]) % (vecBuf[2] - vecBuf[0]) * vecBuf[3] > 0) {
for(int i = 0; i < 4; i++) {
vecBuf[i].z = -vecBuf[i].z;
}
}
Triangle triangleBuf[MAX_POINT_COINT * 2 * 10]{{0,1,2}, {0,2,3}, {0,3,1}, {3,2,1}};
TriangleNeighbors neighborBuf[MAX_POINT_COINT * 2 * 10];
int removalBuf[MAX_POINT_COINT * 2 * 10];
EdgePiece edgeBuf[MAX_POINT_COINT * 4 * 10];
ConvexShapeBuilder builder(vecBuf, triangleBuf, 4, 4, neighborBuf, removalBuf, edgeBuf);
int numExtraPoints = generateInt(MAX_POINT_COINT - 4);
for(int i = 0; i < numExtraPoints; i++) {
builder.addPoint(generateVec3f());
}
return builder.toPolyhedron();
}
static Triangle finishTriangle(int maxIndex, int firstIndex) {
int secondIndex, thirdIndex;
do {
secondIndex = generateInt(maxIndex);
} while(secondIndex == firstIndex);
do {
thirdIndex = generateInt(maxIndex);
} while(thirdIndex == firstIndex || thirdIndex == secondIndex);
return Triangle{firstIndex, secondIndex, thirdIndex};
}
Triangle generateTriangle(int maxIndex) {
int firstIndex = generateInt(maxIndex);
return finishTriangle(maxIndex, firstIndex);
}
TriangleMesh generateTriangleMesh() {
int numVertices = generateInt(46) + 4;
int numTriangles = generateInt(100) + numVertices;
EditableMesh mesh(numVertices, numTriangles);
for(int i = 0; i < numVertices; i++) {
mesh.setVertex(i, generateVec3f());
}
for(int i = 0; i < numVertices; i++) {
mesh.setTriangle(i, finishTriangle(numVertices, i)); // ensure one triangle per vertex
}
for(int i = numVertices; i < numTriangles; i++) {
mesh.setTriangle(i, generateTriangle(numVertices)); // extra triangles
}
return TriangleMesh(std::move(mesh));
}
PositionTemplate<float> generatePositionf() {
return PositionTemplate<float>(generateFloat(), generateFloat(), generateFloat());
}
Position generatePosition() {
return Position(generateDouble(), generateDouble(), generateDouble());
}
BoundsTemplate<float> generateBoundsf() {
PositionTemplate<float> a = generatePositionf();
PositionTemplate<float> b = generatePositionf();
return BoundsTemplate<float>(PositionTemplate<float>(std::min(a.x, b.x), std::min(a.y, b.y), std::min(a.z, b.z)), PositionTemplate<float>(std::max(a.x, b.x), std::max(a.y, b.y), std::max(a.z, b.z)));
}
Bounds generateBounds() {
Position a = generatePosition();
Position b = generatePosition();
return Bounds(Position(min(a.x, b.x), min(a.y, b.y), min(a.z, b.z)), Position(max(a.x, b.x), max(a.y, b.y), max(a.z, b.z)));
}
DiagonalMat3 generateDiagonalMatrix() {
return DiagonalMat3();
}
Rotation generateRotation() {
return Rotation::fromEulerAngles(generateDouble() * 1.507075, generateDouble() * 1.507075, generateDouble() * 1.507075);
}
CFrame generateCFrame() {
return CFrame(generateVec3(), generateRotation());
}
GlobalCFrame generateGlobalCFrame() {
return GlobalCFrame(generatePosition(), generateRotation());
}
TranslationalMotion generateTranslationalMotion() {
return TranslationalMotion(generateTaylor<2>(generateVec3));
}
RotationalMotion generateRotationalMotion() {
return RotationalMotion(generateTaylor<2>(generateVec3));
}
Motion generateMotion() {
return Motion(generateTranslationalMotion(), generateRotationalMotion());
}
RelativeMotion generateRelativeMotion() {
return RelativeMotion(generateMotion(), generateCFrame());
}
PartProperties generatePartProperties() {
return PartProperties{generateDouble(),generateDouble(),generateDouble()};
}
Part generatePart() {
return Part(generateShape(), generateGlobalCFrame(), generatePartProperties());
}
Part generatePart(Part& attachTo) {
return Part(generateShape(), attachTo, generateCFrame(), generatePartProperties());
}
Part generatePart(Part& attachTo, HardConstraint* constraint) {
return Part(generateShape(), attachTo, constraint, generateCFrame(), generateCFrame(), generatePartProperties());
}
HardConstraint* generateHardConstraint() {
return new MotorConstraintTemplate<ConstantMotorTurner>(generateDouble());
}
void generateAttachment(Part& first, Part& second) {
if(generateBool()) {
first.attach(&second, generateCFrame());
} else {
first.attach(&second, generateHardConstraint(), generateCFrame(), generateCFrame());
}
}
std::vector<Part> generateMotorizedPhysicalParts() {
//int size = int(std::sqrt(rand() % 1000)) + 1;
int size = rand() % 5 + 1;
std::vector<Part> parts(size);
parts[0] = generatePart();
if(generateBool()) parts[0].ensureHasPhysical();
for(int i = 1; i < size; i++) {
parts[i] = generatePart();
generateAttachment(parts[i], parts[rand() % i]);
}
return parts;
}
void generateLayerAssignment(std::vector<Part>& parts, WorldPrototype& world) {
std::vector<Part*> layerParts(world.layers.size(), nullptr);
int selectedSubLayer = rand() % ColissionLayer::NUMBER_OF_SUBLAYERS;
for(Part& curPart : parts) {
int selectedLayer = rand() % world.layers.size();
WorldLayer& addTo = world.layers[selectedLayer].subLayers[selectedSubLayer];
if(layerParts[selectedLayer] == nullptr) {
addTo.tree.add(&curPart);
layerParts[selectedLayer] = &curPart;
} else {
addTo.tree.addToGroup(&curPart, layerParts[selectedLayer]);
}
curPart.layer = &addTo;
}
}
};