-
Notifications
You must be signed in to change notification settings - Fork 19.7k
/
Copy pathAVLTree.java
269 lines (232 loc) · 6.5 KB
/
AVLTree.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
package com.thealgorithms.datastructures.trees;
import java.util.ArrayList;
import java.util.List;
/**
* Represents an AVL Tree, a self-balancing binary search tree.
* In an AVL tree, the heights of the two child subtrees of any node
* differ by at most one. If they differ by more than one at any time,
* rebalancing is performed to restore this property.
*/
public class AVLTree {
private Node root;
private static class Node {
private int key;
private int balance;
private int height;
private Node left;
private Node right;
private Node parent;
Node(int k, Node p) {
key = k;
parent = p;
}
public Integer getBalance() {
return balance;
}
}
/**
* Inserts a new key into the AVL tree.
*
* @param key the key to be inserted
* @return {@code true} if the key was inserted, {@code false} if the key already exists
*/
public boolean insert(int key) {
if (root == null) {
root = new Node(key, null);
} else {
Node n = root;
Node parent;
while (true) {
if (n.key == key) {
return false;
}
parent = n;
boolean goLeft = n.key > key;
n = goLeft ? n.left : n.right;
if (n == null) {
if (goLeft) {
parent.left = new Node(key, parent);
} else {
parent.right = new Node(key, parent);
}
rebalance(parent);
break;
}
}
}
return true;
}
/**
* Deletes a key from the AVL tree.
*
* @param delKey the key to be deleted
*/
public void delete(int delKey) {
if (root == null) {
return;
}
// Find the node to be deleted
Node node = root;
Node child = root;
while (child != null) {
node = child;
child = delKey >= node.key ? node.right : node.left;
if (delKey == node.key) {
delete(node);
return;
}
}
}
private void delete(Node node) {
if (node.left == null && node.right == null) {
// Leaf node
if (node.parent == null) {
root = null;
} else {
Node parent = node.parent;
if (parent.left == node) {
parent.left = null;
} else {
parent.right = null;
}
rebalance(parent);
}
return;
}
// Node has one or two children
Node child;
if (node.left != null) {
child = node.left;
while (child.right != null) {
child = child.right;
}
} else {
child = node.right;
while (child.left != null) {
child = child.left;
}
}
node.key = child.key;
delete(child);
}
/**
* Returns a list of balance factors for each node in the tree.
*
* @return a list of integers representing the balance factors of the nodes
*/
public List<Integer> returnBalance() {
List<Integer> balances = new ArrayList<>();
returnBalance(root, balances);
return balances;
}
private void returnBalance(Node n, List<Integer> balances) {
if (n != null) {
returnBalance(n.left, balances);
balances.add(n.getBalance());
returnBalance(n.right, balances);
}
}
/**
* Searches for a key in the AVL tree.
*
* @param key the key to be searched
* @return true if the key is found, false otherwise
*/
public boolean search(int key) {
Node result = searchHelper(this.root, key);
return result != null;
}
private Node searchHelper(Node root, int key) {
if (root == null || root.key == key) {
return root;
}
if (root.key > key) {
return searchHelper(root.left, key);
}
return searchHelper(root.right, key);
}
private void rebalance(Node n) {
setBalance(n);
if (n.balance == -2) {
if (height(n.left.left) >= height(n.left.right)) {
n = rotateRight(n);
} else {
n = rotateLeftThenRight(n);
}
} else if (n.balance == 2) {
if (height(n.right.right) >= height(n.right.left)) {
n = rotateLeft(n);
} else {
n = rotateRightThenLeft(n);
}
}
if (n.parent != null) {
rebalance(n.parent);
} else {
root = n;
}
}
private Node rotateLeft(Node a) {
Node b = a.right;
b.parent = a.parent;
a.right = b.left;
if (a.right != null) {
a.right.parent = a;
}
b.left = a;
a.parent = b;
if (b.parent != null) {
if (b.parent.right == a) {
b.parent.right = b;
} else {
b.parent.left = b;
}
}
setBalance(a, b);
return b;
}
private Node rotateRight(Node a) {
Node b = a.left;
b.parent = a.parent;
a.left = b.right;
if (a.left != null) {
a.left.parent = a;
}
b.right = a;
a.parent = b;
if (b.parent != null) {
if (b.parent.right == a) {
b.parent.right = b;
} else {
b.parent.left = b;
}
}
setBalance(a, b);
return b;
}
private Node rotateLeftThenRight(Node n) {
n.left = rotateLeft(n.left);
return rotateRight(n);
}
private Node rotateRightThenLeft(Node n) {
n.right = rotateRight(n.right);
return rotateLeft(n);
}
private int height(Node n) {
if (n == null) {
return -1;
}
return n.height;
}
private void setBalance(Node... nodes) {
for (Node n : nodes) {
reheight(n);
n.balance = height(n.right) - height(n.left);
}
}
private void reheight(Node node) {
if (node != null) {
node.height = 1 + Math.max(height(node.left), height(node.right));
}
}
}