-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_module.py
56 lines (45 loc) · 1.8 KB
/
data_module.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import os
import torchvision.transforms as transforms
from torch.utils.data import DataLoader, random_split
from torchvision.datasets import MNIST
import pytorch_lightning as pl
NUM_WORKERS = int(os.cpu_count() / 2)
class MNISTDataModule(pl.LightningDataModule):
def __init__(self, batch_size, data_dir="./data", num_workers=NUM_WORKERS):
super().__init__()
self.data_dir = data_dir
self.batch_size = batch_size
self.num_workers = num_workers
self.transform = transforms.Compose(
[
# Mean and Standard Deviation
# Inew = (I - I.mean) / I.std
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,)),
]
)
def prepare_data(self):
MNIST(self.data_dir, train=True, download=True)
MNIST(self.data_dir, train=False, download=True)
def setup(self, stage=None):
# Assign train/val datasets
if stage == "fit" or stage is None:
mnist_full = MNIST(self.data_dir, train=True, transform=self.transform)
self.mnist_train, self.mnist_val = random_split(mnist_full, [55000, 5000])
# Assign test dataset
if stage == "test" or stage is None:
self.mnist_test = MNIST(
self.data_dir, train=False, transform=self.transform
)
def train_dataloader(self):
return DataLoader(
self.mnist_train, batch_size=self.batch_size, num_workers=self.num_workers
)
def val_dataloader(self):
return DataLoader(
self.mnist_val, batch_size=self.batch_size, num_workers=self.num_workers
)
def test_dataloader(self):
return DataLoader(
self.mnist_test, batch_size=self.batch_size, num_workers=self.num_workers
)