-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathtask1_scene_classification.yaml
93 lines (77 loc) · 3.1 KB
/
task1_scene_classification.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
# ==========================================================
# Flow
# ==========================================================
flow:
initialize: true
extract_features: true
feature_normalizer: true
train_system: true
test_system: true
evaluate_system: true
# ==========================================================
# General
# ==========================================================
general:
development_dataset: TUTAcousticScenes_2016_DevelopmentSet
challenge_dataset: TUTAcousticScenes_2016_EvaluationSet
overwrite: false # Overwrite previously stored data
challenge_submission_mode: false # save results into path->challenge_results for challenge submission
# ==========================================================
# Paths
# ==========================================================
path:
data: data/
base: system/baseline_dcase2016_task1/
features: features/
feature_normalizers: feature_normalizers/
models: acoustic_models/
results: evaluation_results/
challenge_results: challenge_submission/task_1_acoustic_scene_classification/
# ==========================================================
# Feature extraction
# ==========================================================
features:
fs: 44100
win_length_seconds: 0.04
hop_length_seconds: 0.02
include_mfcc0: true #
include_delta: true #
include_acceleration: true #
mfcc:
window: hamming_asymmetric # [hann_asymmetric, hamming_asymmetric]
n_mfcc: 20 # Number of MFCC coefficients
n_mels: 40 # Number of MEL bands used
n_fft: 2048 # FFT length
fmin: 0 # Minimum frequency when constructing MEL bands
fmax: 22050 # Maximum frequency when constructing MEL band
htk: false # Switch for HTK-styled MEL-frequency equation
mfcc_delta:
width: 9
mfcc_acceleration:
width: 9
# ==========================================================
# Classifier
# ==========================================================
classifier:
method: gmm # The system supports only gmm
audio_error_handling: # Handling audio errors (temporary microphone failure and radio signal interferences from mobile phones)
clean_data: false # Exclude audio errors from training audio
parameters: !!null # Parameters are copied from classifier_parameters based on defined method
classifier_parameters:
gmm:
n_components: 16 # Number of Gaussian components
covariance_type: diag # [diag|full] Diagonal or full covariance matrix
random_state: 0
thresh: !!null
tol: 0.001
min_covar: 0.001
n_iter: 40
n_init: 1
params: wmc
init_params: wmc
# ==========================================================
# Recognizer
# ==========================================================
recognizer:
audio_error_handling: # Handling audio errors (temporary microphone failure and radio signal interferences from mobile phones)
clean_data: false # Exclude audio errors from test audio