This section contains detailed API documentation for Ember ML.
-
ember_ml.ops
: Core operations for tensor manipulationtensor
: Tensor creation and manipulationmath
: Mathematical operationsrandom
: Random number generationsolver
: Linear algebra operations
-
ember_ml.backend
: Backend abstraction systemnumpy
: NumPy backend implementationtorch
: PyTorch backend implementationmlx
: MLX backend implementationember
: Ember backend implementation
-
ember_ml.features
: Feature extraction and processingTerabyteFeatureExtractor
: Extracts features from large datasetsTemporalStrideProcessor
: Processes temporal data with variable stridesGenericFeatureEngineer
: General-purpose feature engineeringGenericTypeDetector
: Automatic column type detection
-
ember_ml.models
: Machine learning modelsliquid
: Liquid neural networksrbm
: Restricted Boltzmann Machines
-
ember_ml.core
: Core neural implementationsltc
: Liquid Time Constant neuronsgeometric
: Geometric processingspherical_ltc
: Spherical variantsstride_aware_cfc
: Stride-Aware Continuous-time Fully Connected cells
-
ember_ml.attention
: Attention mechanismstemporal
: Time-based attentioncausal
: Causal attentionmultiscale_ltc
: Multiscale LTC attention
-
ember_ml.nn
: Neural network componentswirings
: Network connectivity patternsmodules
: Neural network modules
-
ember_ml.utils
: Utility functionsmath_helpers
: Mathematical utilitiesmetrics
: Evaluation metricsvisualization
: Plotting tools
-
ember_ml.initializers
: Weight initializationglorot
: Glorot/Xavier initializationbinomial
: Binomial initialization
For detailed documentation on specific functions and classes, refer to the docstrings in the source code.