
Github Project: Git Commands
Documentation Template
Programming for Data Science Nanodegree Program

You will use this template to copy and paste the git commands you used to complete all
tasks on your local and remote git repository for this project. This file will serve as your
submission for the GitHub project.

Instructions:
1. Make a copy of this Git Commands Documentation template on your Google Drive.

2. Complete the four sections in this document with the appropriate git commands.

3. Download this document as a PDF file.

4. Submit this on the Project Submission page within the Udacity Classroom.

1. Set Up Your Repository
The following are the steps you will take to create your git repository, add your
python code, and post your files on GitHub.

Step 1. Create a GitHub profile (if you don’t already have one).
Step 2. Fork a repository from Udacity’s GitHub Project repository and provide a link to
your forked GitHub repository here:

GitHub Repository Link

https://github.com/Smpsnseun/pdsnd_github

Step 3. Complete the tasks outlined in the table below and copy and paste your git
commands into the “Git Commands” column. The first git command is partially filled out for
you.

Tasks Git Commands

A. Clone the GitHub repository to your local
repository.

$ git clone
https://github.com/Smpsnseun/pds
nd_github.git

B. Move your bikeshare.py and data files into
your local repository.

No git command needed (you can
use cp or a GUI)

C. Create a .gitignore file containing the name
of your data file.

No git command needed (you can
use touch or a GUI)

D. List the file names associated with the data
files you added to your .gitignore

No git command needed (add the
file names into your .gitignore
file)

E. Check the status of your files to make sure
your files are not being tracked

$ git status

F. Stage your changes. $ git add

G. Commit your changes with a descriptive
message.

$ git commit -m "Add new file
bikeshare.py"

https://github.com/udacity/pdsnd_github
https://github.com/Smpsnseun/pdsnd_github.git
https://github.com/Smpsnseun/pdsnd_github.git

H. Push your commit to your remote repository. $ git push origin master

2. Improve Documentation

Now you will be working in your local repository, on the BikeShare python file and
the README.md file. You should repeat steps C through E three times to make at
least three commits as you work on your documentation improvements.

Tasks Git Commands

A. Create a branch named documentation on
your local repository.

$ git branch documentation

B. Switch to the documentation branch. $ git checkout documentation

C. Update your README.md file. No git command needed (edit the
text in your README.md file)

D. Stage your changes. $ git add README.md

E. Commit your work with a descriptive
message.

$ git commit -m "Change
README.md documentation"

F. Push your commit to your remote repository
branch.

$ git push origin documentation

G. Switch back to the master branch. $ git checkout master

3. Additional Changes to Documentation
In a real world situation, you or other members of your team would likely be making
other changes to documentation on the documentation branch. To simulate this
follow the tasks below.

Tasks Git Commands

A. Switch to the documentation branch. $ git checkout documentation

B. Make at least 2 additional changes to the
documentation - this might be additional
changes to the README or changes to the
document strings and line comments of the
bikeshare file.

$git diff diff --git a/bikeshare.py
b/bikeshare.py index
cd1d149..f4c041f 100644 ---
a/bikeshare.py +++ b/bikeshare.py
@@ -16,6 +16,10 @@ weekdays =
('sunday', 'monday', 'tuesday',
'wednesday', 'thursday', 'friday', def
choice(prompt, choices=('y', 'n')):
"""Return a valid input from the
user given an array of possible
answers. + + Args: + (str) prompt -
prompt with input request + (tup)
choices - tuple with elements of
possible answers """ $ git diff diff
--git a/README.md b/README.md
index 13a6e85..bb56def 100644 ---
a/README.md +++ b/README.md
@@ -5,6 +5,18 @@ ### Description
This is a CLI program developed to
allow the user to explore an US
bikeshare system database and
retrieve statistics information from
the database. The user is able to
filter the information by city, month
and weekday, in order to visualize
statistics information related to a
specific subset of data. +####
Getting Started + +This program is
structured in 2 steps. + +In the first
moment, the user selects the filters
that are going to be applied to the
database. The user is able to
choose as many filters as it would

like. + +After this step, the
DataFrame for the analysis is
created based on the filters chosen
by the user. + +In a second
moment, the user is able to choose,
from a list of options, the statistics
the user would like to calculate,
based on the available filtered data.

C. After each change, stage and commit your
changes. When you commit your work, you
should use a descriptive message of the
changes made. Your changes should be
small and aligned with your commit
message.

$ git add . $ git commit -m “Improve
function choice docstrings” $ git
add . $ git commit -m “Changes
made to README.md
documentation”

D. Push your changes to the remote repository
branch.

$ git push origin documentation

E. Switch back to the master branch. $ git checkout master

F. Check the local repository log to see how all
the branches have changed.

$ git log --oneline --graph --all

G. Go to Github. Notice that you now have two
branches available for your project, and
when you change branches the README
changes.

No git command needed

4. Refactor Code

Now you will be working in your local repository, on the code in your BikeShare
python file to make improvements to its efficiency and readability. You should
repeat steps C through E three times to make at least three commits as you refactor.

Tasks Git Commands

A. Create a branch named refactoring on your
local repository.

$ git checkout -b refactoring

B. Switch to the refactoring branch. $ git checkout -b refactoring

C. Similar to the process you used in making
the documentation changes, make 2 or more
changes in refactoring your code.

No git command needed (edit the
code in your python file)

D. For each change, stage and commit your work
with a descriptive message of the changes
made.

$ git commit -m "Add print
statement warning regarding
Washington's lack of user data" $
git commit -m “Add exception to
trip duration stats”

E. Push your commits to your remote
repository branch.

$ git push origin refactoring

F. Switch back to the master branch. $ git checkout master

G. Check the local repository log to see how all
the branches have changed.

$ git log --graph --all --oneline

H. Go to GitHub. Notice that you now have 3
branches. Notice how the files change as
you move through the branches.

No git command needed

5. Merge Branches

Tasks Git Commands

A. Switch to the master branch. $ git checkout master

B. Pull the changes you and your coworkers
might have made in the passing days (in this
case, you won't have any updates, but pulling
changes is often the first thing you do each
day).

$ git pull origin

C. Since your changes are all ready to go, merge
all the branches into the master. Address any
merge conflicts. If you split up your work
among your branches correctly, you should
have no merge conflicts.

$ git merge refactoring

$ git merge documentation

D. You should see a message that shows the
changes to the files, insertions, and
deletions.

No git command needed

E. Push the repository to your remote
repository.

$ git push origin

F. Go to GitHub. Notice that your master
branch has all of the changes.

No git command needed

Submission:
This concludes the project.

● Please review this document to make sure you entered all the required response
fields in all four sections.

● Download this document as a PDF file.
● Submit the PDF file on the Project Submission page within the Udacity Classroom.

