|
| 1 | +""" |
| 2 | +Example of custom graph using existing nodes |
| 3 | +""" |
| 4 | + |
| 5 | +import os |
| 6 | +from dotenv import load_dotenv |
| 7 | + |
| 8 | +from langchain_openai import ChatOpenAI |
| 9 | +from scrapegraphai.graphs import BaseGraph |
| 10 | +from scrapegraphai.nodes import FetchHTMLNode, ParseHTMLNode, GenerateAnswerNode |
| 11 | + |
| 12 | +# load the environment variables |
| 13 | +load_dotenv() |
| 14 | +openai_key = os.getenv("API_KEY") |
| 15 | +if not openai_key: |
| 16 | + print("Error: OpenAI API key not found in environment variables.") |
| 17 | + |
| 18 | +# Define the configuration for the language model |
| 19 | +llm_config = { |
| 20 | + "api_key": openai_key, |
| 21 | + "model_name": "gpt-3.5-turbo", |
| 22 | + "temperature": 0, |
| 23 | + "streaming": True |
| 24 | +} |
| 25 | +model = ChatOpenAI(**llm_config) |
| 26 | + |
| 27 | +# define the nodes for the graph |
| 28 | +fetch_html_node = FetchHTMLNode("fetch_html") |
| 29 | +parse_document_node = ParseHTMLNode("parse_document") |
| 30 | +generate_answer_node = GenerateAnswerNode(model, "generate_answer") |
| 31 | + |
| 32 | +# create the graph |
| 33 | +graph = BaseGraph( |
| 34 | + nodes={ |
| 35 | + fetch_html_node, |
| 36 | + parse_document_node, |
| 37 | + generate_answer_node |
| 38 | + }, |
| 39 | + edges={ |
| 40 | + (fetch_html_node, parse_document_node), |
| 41 | + (parse_document_node, generate_answer_node) |
| 42 | + }, |
| 43 | + entry_point=fetch_html_node |
| 44 | +) |
| 45 | + |
| 46 | +# execute the graph |
| 47 | +inputs = {"keys": {"user_input": "What is the title of the page?", "url": "https://example.com"}} |
| 48 | +result = graph.execute(inputs) |
| 49 | + |
| 50 | +# get the answer from the result |
| 51 | +answer = result["keys"].get("answer", "No answer found.") |
| 52 | +print(answer) |
0 commit comments