|
| 1 | + |
| 2 | +""" |
| 3 | +Example of custom graph using existing nodes |
| 4 | +""" |
| 5 | +from scrapegraphai.nodes import FetchHTMLNode, ParseHTMLNode, GenerateAnswerNode |
| 6 | +from scrapegraphai.graphs import BaseGraph |
| 7 | +from scrapegraphai.models import OpenAI |
| 8 | +from scrapegraphai.helpers import nodes_metadata |
| 9 | + |
| 10 | +OPENAI_API_KEY = "YOUR_API_KEY" |
| 11 | + |
| 12 | +# check available nodes |
| 13 | + |
| 14 | +nodes_metadata.keys() |
| 15 | + |
| 16 | +# to get more information about a node |
| 17 | +print(nodes_metadata['ImageToTextNode']) |
| 18 | + |
| 19 | +# Define the configuration for the language model |
| 20 | +llm_config = { |
| 21 | + "api_key": OPENAI_API_KEY, |
| 22 | + "model_name": "gpt-3.5-turbo", |
| 23 | + "temperature": 0, |
| 24 | + "streaming": True |
| 25 | +} |
| 26 | +model = OpenAI(llm_config) |
| 27 | + |
| 28 | +# define the nodes for the graph |
| 29 | +fetch_html_node = FetchHTMLNode("fetch_html") |
| 30 | +parse_document_node = ParseHTMLNode("parse_document") |
| 31 | +generate_answer_node = GenerateAnswerNode(model, "generate_answer") |
| 32 | + |
| 33 | +# create the graph |
| 34 | +graph = BaseGraph( |
| 35 | + nodes={ |
| 36 | + fetch_html_node, |
| 37 | + parse_document_node, |
| 38 | + generate_answer_node |
| 39 | + }, |
| 40 | + edges={ |
| 41 | + (fetch_html_node, parse_document_node), |
| 42 | + (parse_document_node, generate_answer_node) |
| 43 | + }, |
| 44 | + entry_point=fetch_html_node |
| 45 | +) |
| 46 | + |
| 47 | +# execute the graph |
| 48 | +inputs = {"user_input": "What is the title of the page?", |
| 49 | + "url": "https://example.com"} |
| 50 | +result = graph.execute(inputs) |
| 51 | + |
| 52 | +# get the answer from the result |
| 53 | +answer = result.get("answer", "No answer found.") |
| 54 | +print(answer) |
0 commit comments