
COMPUTATIONAL EFFICIENCY OF INFERENCE METHODS FOR1

STOCHASTIC DIFFERENTIAL EQUATION DYNAMICS2

ALAN AMIN3

1. Introduction. Stochastic differential equations with respect to a Wiener4

process (SDEs) are useful implicit descriptions of certain Markov processes. They5

have been applied to modelling financial markets [5, 1], projecting the paths of space-6

craft [1], and describing biological phenomenon [8]. They also can be used to build7

stochasticity into state space models [9].8

Inference of SDEs has remained a challenge - in particular, the task of computa-9

tionally efficient calculation of gradients of a loss function. Early methods included10

Monte Carlo forward differentiation of parameters of the drift and noise functions,11

however, these scale poorly with the number of parameters, which can be very high12

when these functions are high dimensional or if a deeper or wider neural network is13

necessary for example. A more computationally efficient method in this case is Monte14

Carlo backpropogation through the SDE solver given a realization of the Wiener15

process [?]. However, this method requires one to save the forward path of the SDE16

which can be memory intensive for long time series. Adjoint methods instead define17

a backwards SDE that one may solve to calculate gradients. Early adjoint methods18

considered each step of an Euler-Maruyama SDE solver a constrained optimization19

problem and were able to define the backwards SDEs by taking derivatives: one ef-20

fort defined the backwards SDE for use in calculating monte carlo estimates of the21

gradient [6], while another used quadrature to approximately integrate over all paths22

[2]. Recently, the adjoint method has been extended for the use of any Stratonovich23

SDE solver [9].24

Here I explore these ideas by implementing a high performance version of both25

this later adjoint method, and backpropogation. To achieve low level control of the26

SDE solver, I implement my own solver using the Euler-Heun method. I compare27

the accuracy of the gradients of this adjoint method, and backpropogation as well as28

benchmark their computational cost and ability to fit data. I will demonstrate the29

convergence of my solver and gradient estimates to the correct values. Then I will30

show that my implementation of gradient estimation using backpropogation is more31

computationally efficient and results in higher quality inference than my implementa-32

tion of the adjoint method for gradient calculation. This investigation represents my33

edification in the solving and inference of SDEs, as well as an investigation into the34

factors that effect the utility of these two gradient estimation methods.35

2. Results.36

2.1. Euler-Heun method solver.37

2.1.1. Setup. I consider here the SDE, from time 0 to T ,

dXt � fpXt, tqdt� gpXt, tq � dWt

where Xt has d dimensions and the Wiener process W has m dimensions. To inves-38

tigate how the architecture of an SDE solver may affect the performance of gradient39

estimation techniques, and to easily implement backpropogation, I implement my own40

SDE solver.41

The naive implementation of a solver for a Stratonovich integral is known as the
Euler-Heun. In probability, as the mesh size of the grating 0 � t0   � � �   tn � T

1

This manuscript is for review purposes only.



2 ALAN AMIN

goes to 0,

n�1̧

i�0

gpXti�1
, ti�1q � gpXti , tiq

2
pWti�1

�Wtiq Ñ
» T
0

gpXt, tq � dWt.

The Euler-Heun (EH) method SDE solver approximates the integral for a time step42

δt via a second order Runga-Kutta (RK) method to approximate the average of the43

drift and diffusion evaluated at the start and stop time of each step:44

Hi�1 � Xi � fpXi, tiqδt� gpXi, tiq∆Wi45

Xi�1 � Xi � δt

2
pfpXi, tiq � fpHi�1, ti�1qq46

�1

2
pgpXi, tiq � gpHi�1, ti�1qq∆Wi47

∆Wi �
?
δtNp0, 1q.4849

The EH method is strong order 0.5 - if Xδt
T is approximated using the EH method50

with step size δt, then51

(2.1) }Xδt
T �XT }L2 À δt0.5.52

2.1.2. Results. Throughout, I will use one layer neural networks with tanh ac-53

tivation as the drift and diffusion functions f and g. As well, I will consider a two54

dimensional SDE with 2 dimensions of diffusion, i.e. d � m � 2. g will not be assumed55

diagonal or commutative. To allow for efficient evaluation of the neural networks, I56

used the @einsum macro, which avoids boundschecking by checking compatibility of57

the dimensions of tensors before the multiplication. I used function barriers when58

unpacking parameters to allow the function to specialize on the input type (functions59

f NN! and g NN! in the code). Finally, to avoid repeated memory allocation for eval-60

uations of intermediate values in the evaluation of f or g, I preallocate the memory to61

store these values; I then pass the variables associated to this memory as a parameter62

to the functions f NN! and g NN! and mutate it to these intermediate values (variables63

t1 and t2 in the code).64

I implement a high performance EH solver for SDEs that takes as input, a starting65

point, a parametrized drift function, a parametrized diffusion function, and parame-66

ters (function my SDEsolve! in code) (Fig 1A). To minimize memory allocation per67

step, I preallocated all the memory necessary to store intermediate values for each68

step and mutate these variables (function EH! in code).69

One step of the solver, given the step size of the Wiener process, was benchmarked70

as having 0 memory allocations and taking 1.790 µs on my machine (section ”Time71

Euler-Heun” in the code). Much of this computational complexity came from the72

need to apply the costly tanh non-linearity: the time was almost halved to 1.08073

µs when using a ReLu activation. Below however, I only consider the use of the74

tanh non-linearity unless stated otherwise. To evaluate the convergence of my solver,75

I used the Euler-Heun solver implemented in DifferentialEquations.jl with step size76

2�16 to approximate XT (in this case I used T � 1). Since the solver had a fixed step77

size, it was easy to save its noise and use it in my solver to calculate Xδt
T with step78

sizes δt ranging from 2�7 to 2�12 (section ”EH is order 0.5” in the code). Empirical79

estimation of the L2 distance reveal that my method converges to the correct solution80

and a linear regression reveals that it is of approximate order 0.522, similar to the81

theoretical 0.5 described in equation 2.1.82

This manuscript is for review purposes only.



COMPUTATIONAL EFFICIENCY OF INFERENCE METHODS FOR STOCHASTIC DIFFERENTIAL EQUATION DYNAMICS3

Fig. 1. A: Example paths starting at the point (1, 2) given by my Euler-Heun solver given
a instantiation of the drift (blue arrows) and diffusion functions. The solution to the ordinary
differential equation without the drift is also shown. In this example, the stochasticity causes some
paths to cross a separatrix and depart significantly from the ODE solution. B: Converge of the L2

error defined in equation 2.1. A linear regression of the last 6 points gives a slope of -0.522 and an
R2 of 0.995, close to the theoretical -0.5. The violin plots contain 100 point each.

This manuscript is for review purposes only.



4 ALAN AMIN

Fig. 2. A: A schematic of the calculation of the gradient of the loss with respect to the
parameters and starting point by backpropogation through he solver. B: The computation graph of
a single Euler-Heun step. I reverse it to calculate the pullback.

2.2. Backpropogation through the solver.83

2.2.1. Setup. Here I consider the problem of approximating gradients of some84

loss function L by backpropogation through the solver. Say pXiqni�0 are the steps85

of the SDE iterator, i.e. Xi�1 � EHpXi, pq where EH is one step of the solver.86

Call BpEHpX,pq the p component of the backpropogation of the Euler-Heun step and87

BXEHpX,pq the X component. Then88

dL
dXi

� BL
BXi

� BXEHpXi,pqq

�
dL

dXi�1



(2.2)89

dL
dp

�
ņ

i�1

BpEHpXi�1,pqq

�
dL
dXi



(2.3)90

91

(Fig 2A). To calculate BXEHpX,pq and BpEHpX,pq I consider the computation graph in92

fig 2B.93

2.2.2. Results. To generate data to define a loss function, I initialize the pa-94

rameters of f and g to random values and sample values from a path of the solution95

(section ”Gen data” in the code). Bellow I consider the `2 loss with respect to this96

data.97

When writing the pullback of the neural networks, I again used the @einsum98

macro (functions pullback f! and pullback g! in the code). When these functions99

were called, I again preallocate memory to store intermediate calculations and pass100

these variables as parameters. I also again use function barriers when unpacking101

parameters.102

I implement a high performance pullback of the SDE solver that takes as input,103

the forward path, a parametrized drift function, a parametrized diffusion function,104

pullbacks of the drift and diffusion that add to the derivatives with respect to the105

parameters instead of overwrite them, and parameters (function my SDEbackprop!106

in code).107

One iteration of the Euler-Heun pullback, given the step size of the Wiener108

process, was benchmarked as having 0 memory allocations and taking 18.799 µs on my109

machine. The derivatives calculated by the backpropogation algorithm are validated110

by those calculated by finite differencing (section ”Backprop” in code) (Fig 3). Small111

differences between the gradient calculated by backpropogation and that calculated112

This manuscript is for review purposes only.



COMPUTATIONAL EFFICIENCY OF INFERENCE METHODS FOR STOCHASTIC DIFFERENTIAL EQUATION DYNAMICS5

by finite differencing are likely due to the finite differencing algorithm only returning113

values up to a certain precision or precision loss when calculating gradients through114

a tanh function; in particular, the step size doesn’t affect the agreement between the115

two methods.116

2.3. Adjoint method.117

2.3.1. Setup. I now implement the adjoint method of gradient estimation de-
scribed in [9]. Call BfpX,pq the pullback of the drift function and BgipX,pq the pullback
of the i-th column diffusion function. Consider the backwards SDE defined in [9]

dpAt, Btq � BfpX,pqpAtq �
m̧

i�1

BgipX,pqpAtq � d|Wi,t

With AT � BL
BXT

, BT � ~0 and A jumping at time t1 by a magnitude of BL
BXt1

. Then,118

by the results in [9], A0 � dL
dX0

and B0 � dL
dp . It is also shown that the forward path119

X satisfies the backwards SDE120

(2.4) dXt � �fpXt, pqdt� gpXt, pq � d|Wt.121

Crucially, the stochastic integrals in these results are of the Stranovich interpretation.122

Thus, the EH method may be used to evaluate them.123

Solving such a backwards SDE is identical to solving the forwards SDE

dYt � �fpYt, pqdt� gpYt, pq � dVt
where Yt � XT�t and Vt � �WT�t. The major difficulty in implementing this model124

is that the forwards and backwards noise must be the same. One solution for fixed125

step-size solvers is to save the path of the noise and reuse it when going backwards.126

[9] avoids this by implementing using what they call a Brownian tree. Here, a single127

random seed determines the value of the Wiener process path at all points pi2�mq2mi�0128

for a given m. The computation cost of querying the Brownian tree scales linearly129

with m.130

2.3.2. Results. I use the implementation of the Brownian tree at http://github.131

com/SciML/DiffEqNoiseProcess.jl/pull/65.132

To implement a high performance version of the adjoint method, I simply plugged133

in the pullback function for the neural networks f and g into my SDE solver (section134

”Backwards SDE” in the code). I show that the forward and reverse solutions to the135

SDE are the same as described by equation 2.4 (Fig 4). Furthermore, I show that136

the gradients of the adjoint method agree with those calculated by finite differencing,137

with the agreement becoming better as the step size used in the solver decreases, and138

thus the solution becomes more accurate (Fig 3).139

At a step size of 2�12, the Brownian tree algorithm takes 5.750 µs and makes140

100 allocations of 10 kB. This is almost an order of magnitude more resources than a141

step of the solver. Since the Euler-Heun method is a fixed step size solver and saving142

the path does not incur a significant memory cost, hereafter, I opt instead to simply143

save the noise from the forward pass for use in the backwards pass. As well, instead144

of using the forward solution as calculated in the backwards pass, I simply save the145

forwards pass, incurring minimal memory cost, as pass this path to the backwards146

path; I expect this to increase the stability of the solver.147

2.4. Comparing the adjoint method and backpropogation.148

This manuscript is for review purposes only.

http://github.com/SciML/DiffEqNoiseProcess.jl/pull/65
http://github.com/SciML/DiffEqNoiseProcess.jl/pull/65
http://github.com/SciML/DiffEqNoiseProcess.jl/pull/65


6 ALAN AMIN

Fig. 3. Fractional error of parameter gradients calculated using back propagation or the adjoint
method in comparison to those calculated by finite differencing for step sizes A: 2�10, B: 2�12, C:
2�14. These plots are each for a single realization of the Wiener process and plot all parameters of
f , g and the starting point. Notice the x axis scaling is not the same between plots (sorry!).

This manuscript is for review purposes only.



COMPUTATIONAL EFFICIENCY OF INFERENCE METHODS FOR STOCHASTIC DIFFERENTIAL EQUATION DYNAMICS7

Fig. 4. Shown here is the forwards and backwards solution to an SDE for a given realization
of the Wiener process. The two paths are superimposed and thus visually identical.

2.4.1. Performance. Here I will compare the computational complexity and149

accuracy of the gradient calculation by the adjoint method and by backpropogation150

through the solver.151

For a step size of 2�12 I was able to optimize the backpropogation method to152

take 86.573 ms while the adjoint method took 554.085 ms with an order of magnitude153

more allocations. The most time consuming step in the later case is the calculation154

of the pullback of the diffusion function. In particular, my implementation updates155

the diffusion matrix column by column requiring one to take slices of the diffusion156

matrix. These views are allocated to the heap. This represents an opportunity for157

optimization by predefining the views and reusing them step to step.158

As was shown above, both methods agree with parameter gradient estimated159

by finite differencing with the agreement increasing for the adjoint method as the160

step size decreased. The result is similar when comparing the gradients of the two161

methods directly (Fig 5A). In principle, the gradients calculated by finite differencing162

and backpropogation are not exactly the gradients of the loss function as the forward163

solve is inexact. However, there is no reason a priori to believe the adjoint method164

should have more accurate gradient estimates; in fact, one would expect that the165

error from the backwards solve add to that of the forwards solve to give an even less166

accurate estimate. Thus, those values in Fig 5A may be interpreted as lower bound for167

the error of the gradients. Clearly, due to the increased computational efficiency and168

more accurate gradient estimates, my implementation of backpropogation through169

the solver is superior to my implementation of the adjoint method.170

As a curiosity, it is worth mentioning that path of pAtqt as calculated by the171

adjoint method is very similar to p dL
dXT�t

qt (Fig 5B), although it is expected that172

these two paths have similar start and end points p dL
dXT

qt and p dLdX0
qt respectively.173

2.4.2. Inference. Here I will investigate how these two method perform in an174

inference task. I will attempt to minimize the `2 error to the data generated above175

via (stochastic) gradient descent (section ”Training loop” in the code). I had better176

This manuscript is for review purposes only.



8 ALAN AMIN

Fig. 5. A: Fractional error of parameter gradients calculated using back propagation in
comparison to those calculated by adjoint method for step sizes 2�10, 2�12, 2�14. B: Two dimensions
of the paths of the adjoints At and p dL

dXT�t
qt for a particular realization of the Wiener process. The

two paths are superimposed and visually identical.

results using a ReLu activation in the neural networks than tanh so below I will177

consider fitting f and g with ReLu activations. As well, inference of the starting point178

made the problem much more difficult, so in this setting, I considered the starting179

point known.180

Because of the stochasticity of the gradients, inference was very difficult. Parame-181

ters would explode or the magnitude of g would stabilize at a large value if the learning182

rate was too high. To avoid divergence, it was necessary to average the gradients of183

the parameters over large batches of realizations of the Wiener process. Here I used184

a batch size of 100 and a learning rate of 0.0005. I also observed better results when185

initializing with f and g near 0 but with the values of the first hidden layer positive,186

This manuscript is for review purposes only.



COMPUTATIONAL EFFICIENCY OF INFERENCE METHODS FOR STOCHASTIC DIFFERENTIAL EQUATION DYNAMICS9

Fig. 6. The first column shows inference using backpropogation through the solver to estimate
gradients while the second shows the use of the adjoint method to estimate gradients. For each set
of data, both models were trained for 40 steps, the first column at a learning rate of 0.0005 and the
second at 0.0003. The first row shows the loss decreasing stochastically with increased training. The
middle and last row show the data (points) and the average and standard deviation of 10 paths of
the SDE; the middle row shows paths from the SDE with untrained f and g, and the last row uses
the trained f and g.

so as not to be set to 0 by the activation function.187

I thorough comparison of the two methods would require tuning of the inference188

procedure which is outside the scope of this report. However, I noticed that when189

using gradients calculated by backpropogation, inference with the above parameters190

would usually converge while when using the adjoint method the sometimes diverged.191

Decreasing the learning rate slightly to 0.0003 usually resulted in convergence for192

the adjoint method. However, both methods were eventually able to converge to193

solutions (Fig 6). The solution arrived at when using the adjoint method had a194

higher magnitude g when stochasticity is not necessary to explain the data and had a195

much more stochastic loss curve; this is possibly a by-product of less accurate gradient196

estimates. Neither solution fit the data satisfactorily despite the loss plateauing, likely197

because of many of the nodes of the neural network being turned off by the ReLu198

activation. Further tuning of the architectures of f and g would likely lead to higher199

quality fits.200

This manuscript is for review purposes only.



10 ALAN AMIN

3. Discussion. Here I have implemented the EH SDE solver, backpropogation201

through the solver, and implemented the adjoint method of calculating integrals de-202

scribed in [9]; I was able to use these techniques to fit an SDE to data. My preliminary203

results show that the use of the Brownian tree represents a significant computational204

cost in the evaluation of gradients using the adjoint method, and that the more ac-205

curate gradient estimates of the backpropogation method resulted in higher quality206

inference.207

While backpropogation through an EH step should in principle cost more function208

evaluations (one extra pullback of f) the particulars of my implementation meant that209

the backpropogation method was significantly more computationally efficient than the210

adjoint method for gradient calculation. To evaluate accurately the computational211

complexities of these models, a more careful implementation of the adjoint method is212

necessary.213

Multiple ideas important to the comparison of the adjoint method and backpro-214

pogation were not explored in this report.215

1) Most important is the selection of the SDE solver.216

a) The EH method has fixed timesteps. This allowed me to save the forward path217

and noise at the time-points visited in the forwards pass for use in the backwards218

path, significantly decreasing the computational complexity of the adjoint method219

while likely increasing its stability. Many solvers use adaptive step sizes however to220

increase solution stability. This negates the benefit in stability and speed I saw in my221

analysis.222

b) When efficiency is measured as number of calculations required to reach a223

certain error rate, the stochastic Runga-Kutta (SRK) method described in [12] leads224

to very efficient solvers; in particular, methods that are more efficient than the EH225

method. By running these SRK methods with two tableau, one may calculate esti-226

mated error to create adaptive SDE solvers as well [11]. These family of methods are227

more efficient given more stringent requirements on the form of the diffusion term g:228

the SRA methods are the most efficient, assuming additive noise (i.e. gpx, tq � gptq);229

the SRID methods are less efficient, only assuming the diffusion function is diagonal,230

i.e. the noise in each dimension is independent; the SRIC methods are less efficient as-231

suming a commutativity property; and finally, the general SRI methods, which make232

no assumption about the form of the noise, are least efficient as they must calculate233

iterated stochastic integrals [13]. The form of the noise for the backwards SDE may234

differ from that of the forwards, requiring a less efficient solver. In particular, when235

the forward SDE has diagonal noise, the backwards SDE is only guaranteed to have236

commutative noise. However, when the forwards SDE has additive noise, the pull237

back of the noise does as well. Thus it is possible that the adjoint method may only238

be optimal for certain SDEs.239

c) Here I only considered simple neural SDEs without stiffness. Stiff SDEs require240

the application of solvers with large stability regions. To achieve this, implicit methods241

have often been used. Backpropogation through implicit methods is extremely costly.242

This fact has previously been described as an advantage of the adjoint method for243

gradient estimation [3]. However, recent work has also developed stability optimised244

SRK methods SOSRI and SOSRI2 [10]; these methods are stable enough to solve stiff245

SDEs, are significantly more computationally efficient than implicit methods, and are246

much easier to backpropogate through. As well, these methods are restricted to SDEs247

with diagonal noise however and thus cannot be used for the backwards pass of the248

adjoint method. This potentially puts the adjoint method at a disadvantage when249

handling stiff SDEs.250

This manuscript is for review purposes only.



COMPUTATIONAL EFFICIENCY OF INFERENCE METHODS FOR STOCHASTIC DIFFERENTIAL EQUATION DYNAMICS11

d) Here I considered an SDE that did not need to be run with small time steps251

for the solver to get accurate estimates of the solution. SDEs where smaller step252

sizes are necessary would increase the memory burden, making the adjoint method253

more appealing. However, adaptive methods that decrease the step size of the solver254

commensurately with the estimated error of the solver may decrease the number255

of steps in the path and thus incur a smaller burden on memory. As well, more256

computationally efficient methods, with fewer calls to the Wiener process and function257

evaluations would incur a smaller memory cost to the solver. Finally, not every258

intermediate calculation need be saved to implement backpropogation: some may be259

recalculated, such as Hi�1 in my implementation of backpropogation.260

2) One potential solution to the instability of inference of SDEs is regulariza-261

tion by penalizing the magnitude of higher order derivatives of the solutions or the262

derivatives of the dynamics as suggested in [4, 7]. While the former solution is not263

easily translatable to the SDE case where solutions are a.s. nowhere differentiable,264

the latter may lead to more stable inference. This could make the instability of the265

adjoint method less of a detriment during inference.266

3) In [9] it was recommended that latent SDEs be trained using the evidence267

lower bound (ELBO) as an objective. This objective avoids the collapse of the noise268

during training as seen in Fig 6. To make sense of the ELBO, one must be able to269

compute the KL divergence to a prior. Using Girsanov’s theorem, one may find the270

KL divergence between a prior SDE with the same diffusion, but possibly different271

drift, and the learned SDE (when the diffusions are different, it is possible that the272

supports of the laws of the solutions are non-overlapping and thus have divergence273

infinity - for example solutions for SDEs with different additive diffusions a.s. have274

paths with different quadratic variation). The Bayesian setup would normally require275

that one fix the prior, this would result in fixing the diffusion. Optimizing the ELBO276

with respect to the diffusion is, however, still mathematically possible ([9] section277

9.7). How the treatment of the diffusion as a learnable function or hyper-parameter278

affects the quality of the latent representation is unexplored; it is thus possible that279

the adjoint method may be superior in the situation where one must only learn the280

drift.281

Both methods of gradient calculation explored in this report have their theoretical282

advantages. However, an enumeration of use case and class of SDE is complex and283

results are subject to change as new SDE solvers are implemented. However, such284

challenges must be overcome to progress towards scalable inference of SDEs.285

REFERENCES286

[1] R. F. Bass, Stochastic Processes, Cambridge University Press, 2011.287
[2] H. S. Bhat and R. W. Madushani, Nonparametric adjoint-based inference for stochastic dif-288

ferential equations, Proceedings - 3rd IEEE International Conference on Data Science and289
Advanced Analytics, DSAA 2016, (2016), pp. 798–807, https://doi.org/10.1109/DSAA.290
2016.69.291

[3] R. T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. Duvenaud, Neural Ordinary292
Differential Equations, in NeurIPS, 2018, https://doi.org/10.1007/978-3-662-55774-7 3,293
https://arxiv.org/abs/arXiv:1806.07366v5.294

[4] C. Finlay, J.-H. Jacobsen, L. Nurbekyan, and A. M. Oberman, How to train your neural295
ODE: the world of Jacobian and kinetic regularization, (2020), http://arxiv.org/abs/2002.296
02798, https://arxiv.org/abs/2002.02798.297

[5] M. Giles and P. Glasserman, Smoking adjoints: fast monte carlo greeks, Risk,298
(2006), pp. 88–92, http://scholar.google.com/scholar?hl=ent&ubtnG=Searcht&uq=intitle:299
Smoking+adjoints:+fast+Monte+Carlo+Greekst#u0.300

This manuscript is for review purposes only.

https://doi.org/10.1109/DSAA.2016.69
https://doi.org/10.1109/DSAA.2016.69
https://doi.org/10.1109/DSAA.2016.69
https://doi.org/10.1007/978-3-662-55774-7_3
https://arxiv.org/abs/arXiv:1806.07366v5
http://arxiv.org/abs/2002.02798
http://arxiv.org/abs/2002.02798
http://arxiv.org/abs/2002.02798
https://arxiv.org/abs/2002.02798
http://scholar.google.com/scholar?hl=en{&}btnG=Search{&}q=intitle:Smoking+adjoints:+fast+Monte+Carlo+Greeks{#}0
http://scholar.google.com/scholar?hl=en{&}btnG=Search{&}q=intitle:Smoking+adjoints:+fast+Monte+Carlo+Greeks{#}0
http://scholar.google.com/scholar?hl=en{&}btnG=Search{&}q=intitle:Smoking+adjoints:+fast+Monte+Carlo+Greeks{#}0


12 ALAN AMIN

[6] B. P. Gross, Applications of the Adjoint Method in Stochastic Financial Modelling, (2015).301
[7] J. Kelly, J. Bettencourt, M. J. Johnson, and D. Duvenaud, Learning differential equations302

that are easy to solve, arXiv, 3 (2020), https://arxiv.org/abs/2007.04504.303
[8] M. Kimura, On the probability of fixation of mutant genes in a population., Genetics, 47304

(1962), pp. 713–719.305
[9] X. Li, T.-K. L. Wong, R. T. Q. Chen, and D. Duvenaud, Scalable Gradients for Stochastic306

Differential Equations, in Proceedings of the 23rdInternational Conference on Artificial307
Intelligence and Statistics (AISTATS), vol. 108, 2020, http://arxiv.org/abs/2001.01328,308
https://arxiv.org/abs/2001.01328.309

[10] C. Rackauckas, Stability-Optimized High Order Methods and Stiffness Detection for Pathwise310
Stiff Stochastic Differential Equations ods for Diagonal Noise SDEs.311

[11] C. Rackauckas and Q. Nie, Adaptive methods for stochastic differential equations via natu-312
ral embeddings and rejection sampling with memory, Discrete and Continuous Dynamical313
Systems - Series B, 22 (2017), pp. 2731–2761, https://doi.org/10.3934/dcdsb.2017133.314

[12] A. Rößler, Runge-Kutta methods for Stratonovich stochastic differential equation systems315
with commutative noise, Journal of Computational and Applied Mathematics, 164-165316
(2004), pp. 613–627, https://doi.org/10.1016/j.cam.2003.09.009.317

[13] M. Wiktorsson, Joint characteristic function and simultaneous simulation of iterated Itô318
integrals for multiple independent Brownian motions, Annals of Applied Probability, 11319
(2001), pp. 470–487, https://doi.org/10.1214/aoap/1015345301.320

This manuscript is for review purposes only.

https://arxiv.org/abs/2007.04504
http://arxiv.org/abs/2001.01328
https://arxiv.org/abs/2001.01328
https://doi.org/10.3934/dcdsb.2017133
https://doi.org/10.1016/j.cam.2003.09.009
https://doi.org/10.1214/aoap/1015345301

	Introduction
	Results
	Euler-Heun method solver
	Setup
	Results

	Backpropogation through the solver
	Setup
	Results

	Adjoint method
	Setup
	Results

	Comparing the adjoint method and backpropogation
	Performance
	Inference


	Discussion
	References

