forked from NOAA-PSL/stochastic_physics
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstochy_data_mod.F90
400 lines (382 loc) · 16.9 KB
/
stochy_data_mod.F90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
!>@brief The module 'stochy_data_mod' contains the initilization routine that read the stochastic phyiscs
!! namelist and determins the number of random patterns.
module stochy_data_mod
! set up and initialize stochastic random patterns.
use spectral_layout_mod, only: len_trie_ls,len_trio_ls,ls_dim,ls_max_node
use stochy_resol_def, only : skeblevs,levs,jcap,lonf,latg
use stochy_namelist_def
use constants_mod, only : radius
use spectral_layout_mod, only : me, nodes
use mpi_wrapper, only: mp_bcst, is_master
use stochy_patterngenerator_mod, only: random_pattern, patterngenerator_init,&
getnoise, patterngenerator_advance,ndimspec,chgres_pattern,computevarspec_r
use initialize_spectral_mod, only: initialize_spectral
use stochy_internal_state_mod
! use mersenne_twister_stochy, only : random_seed
use mersenne_twister, only : random_seed
use compns_stochy_mod, only : compns_stochy
implicit none
private
public :: init_stochdata
type(random_pattern), public, save, allocatable, dimension(:) :: &
rpattern_sppt,rpattern_shum,rpattern_skeb, rpattern_sfc
integer, public :: nsppt=0
integer, public :: nshum=0
integer, public :: nskeb=0
integer, public :: nlndp=0 ! this is the number of different patterns (determined by the tau/lscale input)
real*8, public,allocatable :: sl(:)
real(kind=kind_dbl_prec),public, allocatable :: vfact_sppt(:),vfact_shum(:),vfact_skeb(:)
real(kind=kind_dbl_prec),public, allocatable :: skeb_vwts(:,:),skeb_vpts(:,:)
real(kind=kind_dbl_prec),public, allocatable :: gg_lats(:),gg_lons(:)
real(kind=kind_dbl_prec),public :: wlon,rnlat,rad2deg
real(kind=kind_dbl_prec),public, allocatable :: skebu_save(:,:,:),skebv_save(:,:,:)
integer,public :: INTTYP
type(stochy_internal_state),public :: gis_stochy
contains
!>@brief The subroutine 'init_stochdata' determins which stochastic physics
!!pattern genertors are needed.
!>@details it reads the nam_stochy namelist and allocates necessary arrays
subroutine init_stochdata(nlevs,delt,input_nml_file,fn_nml,nlunit,iret)
!\callgraph
! initialize random patterns. A spinup period of spinup_efolds times the
! temporal time scale is run for each pattern.
integer, intent(in) :: nlunit,nlevs
character(len=*), intent(in) :: input_nml_file(:)
character(len=64), intent(in) :: fn_nml
real, intent(in) :: delt
integer, intent(out) :: iret
real :: ones(5)
real :: rnn1
integer :: nn,nspinup,k,nm,spinup_efolds,stochlun,ierr,n
integer :: locl,indev,indod,indlsod,indlsev
integer :: l,jbasev,jbasod
real(kind_dbl_prec),allocatable :: noise_e(:,:),noise_o(:,:)
include 'function_indlsod'
include 'function_indlsev'
stochlun=99
levs=nlevs
iret=0
! read in namelist
call compns_stochy (me,size(input_nml_file,1),input_nml_file(:),fn_nml,nlunit,delt,iret)
if (iret/=0) return ! need to make sure that non-zero irets are being trapped.
if(is_master()) print*,'in init stochdata',nodes,lat_s
if ( (.NOT. do_sppt) .AND. (.NOT. do_shum) .AND. (.NOT. do_skeb) .AND. (lndp_type==0) ) return
! initialize the specratl pattern generatore (including gaussian grid decomposition)
! if (nodes.GE.lat_s/2) then
! lat_s=(int(nodes/12)+1)*24
! lon_s=lat_s*2
! ntrunc=lat_s-2
! if (is_master()) print*,'WARNING: spectral resolution is too low for number of mpi_tasks, resetting lon_s,lat_s,and ntrunc to',lon_s,lat_s,ntrunc
! endif
call initialize_spectral(gis_stochy, iret)
if (iret/=0) return
allocate(noise_e(len_trie_ls,2),noise_o(len_trio_ls,2))
! determine number of random patterns to be used for each scheme.
do n=1,size(sppt)
if (sppt(n) > 0) then
nsppt=nsppt+1
else
exit
endif
enddo
if (is_master()) print *,'nsppt = ',nsppt
do n=1,size(shum)
if (shum(n) > 0) then
nshum=nshum+1
else
exit
endif
enddo
if (is_master()) print *,'nshum = ',nshum
do n=1,size(skeb)
if (skeb(n) > 0) then
nskeb=nskeb+1
else
exit
endif
enddo
if (is_master()) print *,'nskeb = ',nskeb
! Draper: nlndp>1 was not properly coded. Hardcode to 1 for now
!do n=1,size(lndp_z0)
! if (lndp_z0(n) > 0 .or. lndp_zt(n)>0 .or. lndp_hc(n)>0 .or. &
! lndp_vf(n)>0 .or. lndp_la(n)>0 .or. lndp_al(n)>0) then
! nlndp=nlndp+1
! else
! exit
! endif
!enddo
if (n_var_lndp>0) nlndp=1
if (is_master()) print *,' nlndp = ', nlndp
if (nsppt > 0) allocate(rpattern_sppt(nsppt))
if (nshum > 0) allocate(rpattern_shum(nshum))
if (nskeb > 0) allocate(rpattern_skeb(nskeb))
! mg, sfc perts
if (nlndp > 0) allocate(rpattern_sfc(nlndp))
! if stochini is true, then read in pattern from a file
if (is_master()) then
if (stochini) then
print*,'opening stoch_ini'
OPEN(stochlun,file='stoch_ini',form='unformatted',iostat=ierr,status='old')
if (ierr .NE. 0) then
write(0,*) 'error opening stoch_ini'
iret = ierr
return
end if
endif
endif
! no spinup needed if initial patterns are defined correctly.
spinup_efolds = 0
if (nsppt > 0) then
if (is_master()) print *, 'Initialize random pattern for SPPT'
call patterngenerator_init(sppt_lscale(1:nsppt),spptint,sppt_tau(1:nsppt),sppt(1:nsppt),iseed_sppt,rpattern_sppt, &
lonf,latg,jcap,gis_stochy%ls_node,nsppt,1,0,new_lscale)
do n=1,nsppt
nspinup = spinup_efolds*sppt_tau(n)/spptint
if (stochini) then
call read_pattern(rpattern_sppt(n),1,stochlun)
else
call getnoise(rpattern_sppt(n),noise_e,noise_o)
do nn=1,len_trie_ls
rpattern_sppt(n)%spec_e(nn,1,1)=noise_e(nn,1)
rpattern_sppt(n)%spec_e(nn,2,1)=noise_e(nn,2)
nm = rpattern_sppt(n)%idx_e(nn)
if (nm .eq. 0) cycle
rpattern_sppt(n)%spec_e(nn,1,1) = rpattern_sppt(n)%stdev*rpattern_sppt(n)%spec_e(nn,1,1)*rpattern_sppt(n)%varspectrum(nm)
rpattern_sppt(n)%spec_e(nn,2,1) = rpattern_sppt(n)%stdev*rpattern_sppt(n)%spec_e(nn,2,1)*rpattern_sppt(n)%varspectrum(nm)
enddo
do nn=1,len_trio_ls
rpattern_sppt(n)%spec_o(nn,1,1)=noise_o(nn,1)
rpattern_sppt(n)%spec_o(nn,2,1)=noise_o(nn,2)
nm = rpattern_sppt(n)%idx_o(nn)
if (nm .eq. 0) cycle
rpattern_sppt(n)%spec_o(nn,1,1) = rpattern_sppt(n)%stdev*rpattern_sppt(n)%spec_o(nn,1,1)*rpattern_sppt(n)%varspectrum(nm)
rpattern_sppt(n)%spec_o(nn,2,1) = rpattern_sppt(n)%stdev*rpattern_sppt(n)%spec_o(nn,2,1)*rpattern_sppt(n)%varspectrum(nm)
enddo
do nn=1,nspinup
call patterngenerator_advance(rpattern_sppt(n),1,.false.)
enddo
endif
enddo
endif
if (nshum > 0) then
if (is_master()) print *, 'Initialize random pattern for SHUM'
call patterngenerator_init(shum_lscale(1:nshum),shumint,shum_tau(1:nshum),shum(1:nshum),iseed_shum,rpattern_shum, &
lonf,latg,jcap,gis_stochy%ls_node,nshum,1,0,new_lscale)
do n=1,nshum
nspinup = spinup_efolds*shum_tau(n)/shumint
if (stochini) then
call read_pattern(rpattern_shum(n),1,stochlun)
else
call getnoise(rpattern_shum(n),noise_e,noise_o)
do nn=1,len_trie_ls
rpattern_shum(n)%spec_e(nn,1,1)=noise_e(nn,1)
rpattern_shum(n)%spec_e(nn,2,1)=noise_e(nn,2)
nm = rpattern_shum(n)%idx_e(nn)
if (nm .eq. 0) cycle
rpattern_shum(n)%spec_e(nn,1,1) = rpattern_shum(n)%stdev*rpattern_shum(n)%spec_e(nn,1,1)*rpattern_shum(n)%varspectrum(nm)
rpattern_shum(n)%spec_e(nn,2,1) = rpattern_shum(n)%stdev*rpattern_shum(n)%spec_e(nn,2,1)*rpattern_shum(n)%varspectrum(nm)
enddo
do nn=1,len_trio_ls
rpattern_shum(n)%spec_o(nn,1,1)=noise_o(nn,1)
rpattern_shum(n)%spec_o(nn,2,1)=noise_o(nn,2)
nm = rpattern_shum(n)%idx_o(nn)
if (nm .eq. 0) cycle
rpattern_shum(n)%spec_o(nn,1,1) = rpattern_shum(n)%stdev*rpattern_shum(n)%spec_o(nn,1,1)*rpattern_shum(n)%varspectrum(nm)
rpattern_shum(n)%spec_o(nn,2,1) = rpattern_shum(n)%stdev*rpattern_shum(n)%spec_o(nn,2,1)*rpattern_shum(n)%varspectrum(nm)
enddo
do nn=1,nspinup
call patterngenerator_advance(rpattern_shum(n),1,.false.)
enddo
endif
enddo
endif
if (nskeb > 0) then
! determine number of skeb levels to deal with temperoal/vertical correlations
skeblevs=nint(skeb_tau(1)/skebint*skeb_vdof)
! backscatter noise.
call patterngenerator_init(skeb_lscale(1:nskeb),skebint,skeb_tau(1:nskeb),skeb(1:nskeb),iseed_skeb,rpattern_skeb, &
lonf,latg,jcap,gis_stochy%ls_node,nskeb,skeblevs,skeb_varspect_opt,new_lscale)
do n=1,nskeb
do k=1,skeblevs
nspinup = spinup_efolds*skeb_tau(n)/skebint
if (stochini) then
call read_pattern(rpattern_skeb(n),k,stochlun)
if (is_master()) print *, 'skeb read',k,rpattern_skeb(n)%spec_o(5,1,k)
else
call getnoise(rpattern_skeb(n),noise_e,noise_o)
do nn=1,len_trie_ls
rpattern_skeb(n)%spec_e(nn,1,k)=noise_e(nn,1)
rpattern_skeb(n)%spec_e(nn,2,k)=noise_e(nn,2)
nm = rpattern_skeb(n)%idx_e(nn)
if (nm .eq. 0) cycle
rpattern_skeb(n)%spec_e(nn,1,k) = rpattern_skeb(n)%stdev*rpattern_skeb(n)%spec_e(nn,1,k)*rpattern_skeb(n)%varspectrum(nm)
rpattern_skeb(n)%spec_e(nn,2,k) = rpattern_skeb(n)%stdev*rpattern_skeb(n)%spec_e(nn,2,k)*rpattern_skeb(n)%varspectrum(nm)
enddo
do nn=1,len_trio_ls
rpattern_skeb(n)%spec_o(nn,1,k)=noise_o(nn,1)
rpattern_skeb(n)%spec_o(nn,2,k)=noise_o(nn,2)
nm = rpattern_skeb(n)%idx_o(nn)
if (nm .eq. 0) cycle
rpattern_skeb(n)%spec_o(nn,1,k) = rpattern_skeb(n)%stdev*rpattern_skeb(n)%spec_o(nn,1,k)*rpattern_skeb(n)%varspectrum(nm)
rpattern_skeb(n)%spec_o(nn,2,k) = rpattern_skeb(n)%stdev*rpattern_skeb(n)%spec_o(nn,2,k)*rpattern_skeb(n)%varspectrum(nm)
enddo
endif
enddo
do nn=1,nspinup
call patterngenerator_advance(rpattern_skeb(n),skeblevs,.false.)
enddo
enddo
gis_stochy%kenorm_e=1.
gis_stochy%kenorm_o=1. ! used to convert forcing pattern to wind field.
if (skebnorm==0) then
do locl=1,ls_max_node
l = gis_stochy%ls_node(locl)
jbasev = gis_stochy%ls_node(locl+ls_dim)
indev = indlsev(l,l)
jbasod = gis_stochy%ls_node(locl+2*ls_dim)
indod = indlsod(l+1,l)
do n=l,jcap,2
rnn1 = n*(n+1.)
gis_stochy%kenorm_e(indev) = rnn1/radius**2
indev = indev + 1
enddo
do n=l+1,jcap,2
rnn1 = n*(n+1.)
gis_stochy%kenorm_o(indod) = rnn1/radius**2
indod = indod + 1
enddo
enddo
if (is_master()) print*,'using streamfunction ',maxval(gis_stochy%kenorm_e(:)),minval(gis_stochy%kenorm_e(:))
endif
if (skebnorm==1) then
do locl=1,ls_max_node
l = gis_stochy%ls_node(locl)
jbasev = gis_stochy%ls_node(locl+ls_dim)
indev = indlsev(l,l)
jbasod = gis_stochy%ls_node(locl+2*ls_dim)
indod = indlsod(l+1,l)
do n=l,jcap,2
rnn1 = n*(n+1.)
gis_stochy%kenorm_e(indev) = sqrt(rnn1)/radius
indev = indev + 1
enddo
do n=l+1,jcap,2
rnn1 = n*(n+1.)
gis_stochy%kenorm_o(indod) = sqrt(rnn1)/radius
indod = indod + 1
enddo
enddo
if (is_master()) print*,'using kenorm ',maxval(gis_stochy%kenorm_e(:)),minval(gis_stochy%kenorm_e(:))
endif
! set the even and odd (n-l) terms of the top row to zero
do locl=1,ls_max_node
l = gis_stochy%ls_node(locl)
jbasev = gis_stochy%ls_node(locl+ls_dim)
jbasod = gis_stochy%ls_node(locl+2*ls_dim)
if (mod(l,2) .eq. mod(jcap+1,2)) then
gis_stochy%kenorm_e(indlsev(jcap+1,l)) = 0.
endif
if (mod(l,2) .ne. mod(jcap+1,2)) then
gis_stochy%kenorm_o(indlsod(jcap+1,l)) = 0.
endif
enddo
endif ! skeb > 0
! mg, sfc-perts
if (nlndp > 0) then
ones = 1.
call patterngenerator_init(lndp_lscale(1:nlndp),delt,lndp_tau(1:nlndp),ones(1:nlndp),iseed_lndp,rpattern_sfc, &
lonf,latg,jcap,gis_stochy%ls_node,nlndp,n_var_lndp,0,new_lscale)
do n=1,nlndp
if (is_master()) print *, 'Initialize random pattern for LNDP PERTS'
do k=1,n_var_lndp
nspinup = spinup_efolds*lndp_tau(n)/delt
if (stochini) then
call read_pattern(rpattern_sfc(n),k,stochlun)
if (is_master()) print *, 'lndp pattern read',n,k,minval(rpattern_sfc(n)%spec_o(:,:,k)), maxval(rpattern_sfc(n)%spec_o(:,:,k))
else
call getnoise(rpattern_sfc(n),noise_e,noise_o)
do nn=1,len_trie_ls
rpattern_sfc(n)%spec_e(nn,1,k)=noise_e(nn,1)
rpattern_sfc(n)%spec_e(nn,2,k)=noise_e(nn,2)
nm = rpattern_sfc(n)%idx_e(nn)
if (nm .eq. 0) cycle
rpattern_sfc(n)%spec_e(nn,1,k) = rpattern_sfc(n)%stdev*rpattern_sfc(n)%spec_e(nn,1,k)*rpattern_sfc(n)%varspectrum(nm)
rpattern_sfc(n)%spec_e(nn,2,k) = rpattern_sfc(n)%stdev*rpattern_sfc(n)%spec_e(nn,2,k)*rpattern_sfc(n)%varspectrum(nm)
enddo
do nn=1,len_trio_ls
rpattern_sfc(n)%spec_o(nn,1,k)=noise_o(nn,1)
rpattern_sfc(n)%spec_o(nn,2,k)=noise_o(nn,2)
nm = rpattern_sfc(n)%idx_o(nn)
if (nm .eq. 0) cycle
rpattern_sfc(n)%spec_o(nn,1,k) = rpattern_sfc(n)%stdev*rpattern_sfc(n)%spec_o(nn,1,k)*rpattern_sfc(n)%varspectrum(nm)
rpattern_sfc(n)%spec_o(nn,2,k) = rpattern_sfc(n)%stdev*rpattern_sfc(n)%spec_o(nn,2,k)*rpattern_sfc(n)%varspectrum(nm)
enddo
do nn=1,nspinup
call patterngenerator_advance(rpattern_sfc(n),k,.false.)
enddo
if (is_master()) print *, 'lndp pattern initialized, ',n, k, minval(rpattern_sfc(n)%spec_o(:,:,k)), maxval(rpattern_sfc(n)%spec_o(:,:,k))
endif ! stochini
enddo ! k, n_var_lndp
enddo ! n, nlndp
endif ! nlndp > 0
if (is_master() .and. stochini) CLOSE(stochlun)
deallocate(noise_e,noise_o)
end subroutine init_stochdata
!>@brief This subroutine 'read_pattern' will read in the spectral coeffients from a previous run (stored in stoch_ini,
!!turned on by setting STOCHINI=.true.)
!>@details Data read in are flat binary, so the number of stochastic physics patterns running must match previous run
subroutine read_pattern(rpattern,k,lunptn)
!\callgraph
type(random_pattern), intent(inout) :: rpattern
integer, intent(in) :: lunptn
real(kind_dbl_prec),allocatable :: pattern2d(:),pattern2din(:)
real(kind_dbl_prec) :: stdevin,varin
integer nm,nn,ierr,jcap,isize,k
integer, allocatable :: isave(:)
allocate(pattern2d(2*ndimspec))
pattern2d=0.
call random_seed(size=isize,stat=rpattern%rstate) ! get size of generator state seed array
allocate(isave(isize))
! read only on root process, and send to all tasks
if (is_master()) then
read(lunptn) jcap
read(lunptn) isave
allocate(pattern2din((jcap+1)*(jcap+2)))
print*,'reading in random pattern at ',jcap,ndimspec,size(pattern2din)
read(lunptn) pattern2din
print*,'reading in random pattern (min/max/size/seed)',&
minval(pattern2din),maxval(pattern2din),size(pattern2din),isave(1:4)
if (jcap .eq. ntrunc) then
pattern2d=pattern2din
else
call chgres_pattern(pattern2din,pattern2d,jcap,ntrunc) ! chgres of spectral files
! change the standard deviation of the patterns for a resolution change
! needed for SKEB & SHUM
call computevarspec_r(rpattern,pattern2d,varin)
print*,'stddev in and out..',sqrt(varin),rpattern%stdev
stdevin=rpattern%stdev/sqrt(varin)
pattern2d(:)=pattern2d(:)*stdevin
endif
deallocate(pattern2din)
endif
call mp_bcst(isave,isize) ! blast out seed
call mp_bcst(pattern2d,2*ndimspec)
call random_seed(put=isave,stat=rpattern%rstate)
! subset
do nn=1,len_trie_ls
nm = rpattern%idx_e(nn)
if (nm == 0) cycle
rpattern%spec_e(nn,1,k) = pattern2d(nm)
rpattern%spec_e(nn,2,k) = pattern2d(ndimspec+nm)
enddo
do nn=1,len_trio_ls
nm = rpattern%idx_o(nn)
if (nm == 0) cycle
rpattern%spec_o(nn,1,k) = pattern2d(nm)
rpattern%spec_o(nn,2,k) = pattern2d(ndimspec+nm)
enddo
!print*,'after scatter...',me,maxval(pattern2d_e),maxval(pattern2d_o) &
! ,minval(pattern2d_e),minval(pattern2d_o)
deallocate(pattern2d,isave)
end subroutine read_pattern
end module stochy_data_mod