-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathget_activations.py
230 lines (187 loc) · 8.18 KB
/
get_activations.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import argparse
import os
import tempfile
import llama
import numpy as np
import torch
from baukit import TraceDict
from pathlib import Path
from tqdm import tqdm
from common import (ACTIVATIONS_DIR, DATASET_NAMES, DATASET_SPLITS, DATASETS_DIR, FORMATS,
HF_MODEL_NAMES, RANDOM_QA_DIR, SEED)
from fix_randomness import get_random_questions_generator
from prepare_dataset import (format_qa, format_endq, get_intro_prompt, load_dataset)
from utils import append_key_value_to_meta_data, get_activations_name, hash_array, set_seeds
def pass_args():
parser = argparse.ArgumentParser()
parser.add_argument('--model_name', type=str, default='llama2_chat_7B', choices=HF_MODEL_NAMES.keys())
parser.add_argument('--dataset_name', type=str, default='truthful_qa', choices=DATASET_NAMES)
parser.add_argument('--dataset_split', type=str, default='valid', choices=DATASET_SPLITS)
parser.add_argument('--prompt_format', type=str, default='qa', choices=FORMATS)
parser.add_argument('--activations_dir', type=str, help='dir where to save activations', default=ACTIVATIONS_DIR)
parser.add_argument('--device', type=int, default=0)
parser.add_argument('--n_last_tokens', type=int, help='number of last tokens to take when getting activations', default=2)
parser.add_argument('--intro_prompt', action='store_true', help='use instruction line + few shot QA pairs before prompt', default=False)
parser.add_argument('--seed', type=int, default=SEED, help='seed')
parser.add_argument('--datasets_dir', type=str, default=DATASETS_DIR, help='dir from which to load json datasets')
parser.add_argument('--random_qa_dir', type=str, default=RANDOM_QA_DIR, help='dir from which to load fixed random questions lists')
return parser.parse_args()
def get_llama_activations_bau(model, prompt, device):
model.eval()
HEADS = [f"model.layers.{i}.self_attn.head_out" for i in range(model.config.num_hidden_layers)]
MLPS = [f"model.layers.{i}.mlp" for i in range(model.config.num_hidden_layers)]
with torch.no_grad():
prompt = prompt.to(device)
with TraceDict(model, HEADS+MLPS) as ret:
output = model(prompt, output_hidden_states = True)
hidden_states = output.hidden_states
hidden_states = torch.stack(hidden_states, dim = 0).squeeze()
hidden_states = hidden_states.detach().cpu().numpy()
head_wise_hidden_states = [ret[head].output.squeeze().detach().cpu() for head in HEADS]
head_wise_hidden_states = torch.stack(head_wise_hidden_states, dim = 0).squeeze().numpy()
mlp_wise_hidden_states = [ret[mlp].output.squeeze().detach().cpu() for mlp in MLPS]
mlp_wise_hidden_states = torch.stack(mlp_wise_hidden_states, dim = 0).squeeze().numpy()
return hidden_states, head_wise_hidden_states, mlp_wise_hidden_states
def tokenize_prompt(tokenizer, prompt, prompt_format, dataset_name, use_intro_prompt):
if use_intro_prompt:
intro_prompt = get_intro_prompt(dataset_name) # instruction + [few shot QA pairs]
else:
intro_prompt = ''
if prompt_format == 'qa':
delimeter = 'A: '
elif prompt_format == 'endq':
delimeter = 'Q: '
else:
print(f'Unsupported prompt format: {prompt_format}')
exit(1)
pre_target_part = delimeter.join(prompt.split(delimeter)[:-1]) # prompt pre last (target) line
prompt_pre_target = intro_prompt + pre_target_part # [instruction + few shot] + A/Q prefix
prompt = intro_prompt + prompt # [instruction + few shot] + full A/Q
prompt_pre_target_ids = tokenizer(prompt_pre_target, return_tensors="pt").input_ids
# print('prompt_pre_target', token_ids_to_tokens(tokenizer, prompt_pre_target_ids))
prompt_ids = tokenizer(prompt, return_tensors="pt").input_ids
# print('prompt', token_ids_to_tokens(tokenizer, prompt_ids))
target_starts_at_idx = prompt_pre_target_ids.shape[-1] + 2 # +2 to omit A:/Q: prefix
# print('target', token_ids_to_tokens(tokenizer, prompt_ids)[target_starts_at_idx:])
return prompt_ids, target_starts_at_idx
def get_prompt_activations(
model,
tokenizer,
device,
prompt,
prompt_format,
dataset_name,
use_intro_prompt,
n_last_tokens
):
# count non zero vectors
non_zero_vector_count = n_last_tokens
# tokenize prompt
prompt_ids, target_starts_at_idx = tokenize_prompt(
tokenizer,
prompt,
prompt_format,
dataset_name,
use_intro_prompt
)
# collect output activations
_, head_wise_activations, _ = get_llama_activations_bau(model, prompt_ids, device)
# limit the output activations to just the target part
head_wise_activations = head_wise_activations[:, target_starts_at_idx:, :]
# only from that, get last n tokens
activations = head_wise_activations[:, -n_last_tokens:, :]
# pad preceding tokens with 0s until reaching n_last_tokens length
while activations.shape[1] < n_last_tokens:
zeros_vector = np.zeros(activations.shape[-1])
activations = np.insert(activations, 0, zeros_vector, axis=1)
# for every zero vector inserted, decrese count of non_zero_vectors
non_zero_vector_count -= 1
return activations, non_zero_vector_count
def collect_activations(
model,
tokenizer,
prompts,
n_model_layers,
model_hidden_size,
dataset_name,
prompt_format,
device,
n_last_tokens,
use_intro_prompt,
):
head_wise_activations = np.empty(
(len(prompts), n_model_layers, n_last_tokens, model_hidden_size),
np.float16
)
non_zero_vector_counts = np.empty(len(prompts), np.int8)
for i, prompt in enumerate(tqdm(prompts)):
prompt_activations, prompt_non_zero_vector_count = get_prompt_activations(
model,
tokenizer,
device,
prompt,
prompt_format,
dataset_name,
use_intro_prompt,
n_last_tokens
)
head_wise_activations[i] = prompt_activations
non_zero_vector_counts[i] = prompt_non_zero_vector_count
return head_wise_activations, non_zero_vector_counts
def main(args):
set_seeds(args.seed)
hf_model_name = HF_MODEL_NAMES[args.model_name]
tokenizer = llama.LLaMATokenizer.from_pretrained(hf_model_name)
model = llama.LLaMAForCausalLM.from_pretrained(hf_model_name, low_cpu_mem_usage=True, torch_dtype=torch.float16, device_map="auto")
model.to(args.device)
n_model_layers = model.config.num_hidden_layers
model_hidden_size = model.config.hidden_size
dataset = load_dataset(args.dataset_name, args.dataset_split, args.datasets_dir)
print('Formatting prompts')
if args.prompt_format == 'qa':
_, _, _, _, prompts = format_qa(dataset, tokenizer)
elif args.prompt_format == 'endq':
random_q_generator = get_random_questions_generator(args.dataset_name, args.random_qa_dir)
_, _, _, prompts = format_endq(dataset, tokenizer, random_q_generator)
else:
print(f"Choose prompt format from {FORMATS}")
exit(1)
print('Getting activations')
head_wise_activations, non_zero_vector_counts = collect_activations(
model,
tokenizer,
prompts,
n_model_layers,
model_hidden_size,
args.dataset_name,
args.prompt_format,
args.device,
args.n_last_tokens,
args.intro_prompt,
)
# make sure the dir for saving activations exists
Path(args.activations_dir).mkdir(exist_ok=True)
print("Saving")
activations_name = get_activations_name(
args.model_name,
args.dataset_name,
args.dataset_split,
args.prompt_format,
args.n_last_tokens,
args.seed,
args.intro_prompt
)
np.savez(
f'{args.activations_dir}/{activations_name}_activations',
head_wise_activations=head_wise_activations,
non_zero_vector_counts=non_zero_vector_counts
)
# save meta data
activations_hash = hash_array(head_wise_activations)
append_key_value_to_meta_data(
key=activations_name,
value=activations_hash,
dir_path=args.activations_dir
)
if __name__ == '__main__':
main(pass_args())