forked from coma2441/deepcluster
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_main.py
423 lines (377 loc) · 17.8 KB
/
test_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
#
import argparse
import os
import pickle
import sys
import time
import copy
import faiss
import numpy as np
from sklearn.metrics.cluster import normalized_mutual_info_score
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim
import torch.utils.data
import torchvision.transforms as transforms
import torchvision.datasets as datasets
from scipy.optimize import linear_sum_assignment
import matplotlib.pyplot as plt
current_dir = os.getcwd()
sys.path.append(os.path.join(current_dir, '..', '..', 'deepcluster'))
import paths
import clustering
import models
from util import AverageMeter, Logger, UnifLabelSampler
from clustering import preprocess_features
from batch.augmentation.flip_x_axis import flip_x_axis_img
from batch.augmentation.add_noise import add_noise_img
from batch.dataset import DatasetImg
from batch.dataset import DatasetImgUnbal
#############
from batch.dataset import DatasetGrid
from batch.samplers.sampler_test import SampleFull
from batch.samplers.get_all_patches import GetAllPatches
from data.echogram import Echogram
#############
from batch.data_transform_functions.remove_nan_inf import remove_nan_inf_img
from batch.data_transform_functions.db_with_limits import db_with_limits_img
from batch.combine_functions import CombineFunctions
from classifier_linearSVC import SimpleClassifier
def parse_args():
current_dir = os.getcwd()
parser = argparse.ArgumentParser(description='PyTorch Implementation of DeepCluster')
parser.add_argument('--arch', '-a', type=str, metavar='ARCH',
choices=['alexnet', 'vgg16', 'vgg16_tweak'], default='vgg16_tweak',
help='CNN architecture (default: vgg16)')
parser.add_argument('--clustering', type=str, choices=['Kmeans', 'PIC'],
default='Kmeans', help='clustering algorithm (default: Kmeans)')
parser.add_argument('--nmb_cluster', '--k', type=int, default=81,
help='number of cluster for k-means (default: 10000)')
parser.add_argument('--nmb_category', type=int, default=3,
help='number of ground truth classes(category)')
parser.add_argument('--lr_Adam', default=3e-5, type=float,
help='learning rate (default: 1e-4)')
parser.add_argument('--lr_SGD', default=5e-3, type=float,
help='learning rate (default: 0.05)')
parser.add_argument('--momentum', default=0.9, type=float, help='momentum (default: 0.9)')
parser.add_argument('--wd', default=-5, type=float,
help='weight decay pow (default: -5)')
parser.add_argument('--reassign', type=float, default=1,
help="""how many epochs of training between two consecutive
reassignments of clusters (default: 1)""")
parser.add_argument('--workers', default=4, type=int,
help='number of data loading workers (default: 4)')
parser.add_argument('--start_epoch', default=0, type=int,
help='manual epoch number (useful on restarts) (default: 0)')
parser.add_argument('--save_epoch', default=1, type=int,
help='save features every epoch number (default: 20)')
parser.add_argument('--batch', default=32, type=int,
help='mini-batch size (default: 16)')
parser.add_argument('--seed', type=int, default=31, help='random seed (default: 31)')
parser.add_argument('--verbose', type=bool, default=True, help='chatty')
parser.add_argument('--frequencies', type=list, default=[18, 38, 120, 200],
help='4 frequencies [18, 38, 120, 200]')
parser.add_argument('--window_dim', type=int, default=32,
help='window size')
parser.add_argument('--display_count', type=int, default=100,
help='window size')
parser.add_argument('--sampler_probs', type=list, default=None,
help='[bg, sh27, sbsh27, sh01, sbsh01], default=[1, 1, 1, 1, 1]')
parser.add_argument('--resume',
default=os.path.join(current_dir, 'checkpoint.pth.tar'), type=str, metavar='PATH',
help='path to checkpoint (default: None)')
parser.add_argument('--exp', type=str,
default=current_dir, help='path to exp folder')
parser.add_argument('--optimizer', type=str, metavar='OPTIM',
choices=['Adam', 'SGD'], default='Adam', help='optimizer_choice (default: Adam)')
parser.add_argument('--semi_ratio', type=float, default=0.025, help='ratio of the labeled samples')
return parser.parse_args(args=[])
def zip_img_label(img_tensors, labels):
img_label_pair = []
for i, zips in enumerate(zip(img_tensors, labels)):
img_label_pair.append(zips)
print('num_pairs: ', len(img_label_pair))
return img_label_pair
def flatten_list(nested_list):
flatten = []
for list in nested_list:
flatten.extend(list)
return flatten
def compute_features(dataloader, model, N, device, args):
if args.verbose:
print('Compute features')
batch_time = AverageMeter()
model.eval()
# discard the label information in the dataloader
input_tensors = []
labels = []
with torch.no_grad():
for i, (input_tensor, label) in enumerate(dataloader):
end = time.time()
input_tensor.double()
input_var = torch.autograd.Variable(input_tensor.to(device))
aux = model(input_var).data.cpu().numpy()
if i == 0:
features = np.zeros((N, aux.shape[1]), dtype='float32')
aux = aux.astype('float32')
if i < len(dataloader) - 1:
features[i * args.batch: (i + 1) * args.batch] = aux
else:
# special treatment for final batch
features[i * args.batch:] = aux
input_tensors.append(input_tensor.data.cpu().numpy())
labels.append(label.data.cpu().numpy())
# measure elapsed time
batch_time.update(time.time() - end)
if args.verbose and (i % args.display_count) == 0:
print('{0} / {1}\t'
'Time: {batch_time.val:.3f} ({batch_time.avg:.3f})'
.format(i, len(dataloader), batch_time=batch_time))
input_tensors = np.concatenate(input_tensors, axis=0)
labels = np.concatenate(labels, axis=0)
return features, input_tensors, labels
def sampling_echograms_full(args):
tr_ratio = [0.97808653, 0.01301181, 0.00890166]
path_to_echograms = paths.path_to_echograms()
########
samplers_train = torch.load(os.path.join(path_to_echograms, 'sampler3_tr.pt'))
samplers_bg = torch.load(os.path.join(path_to_echograms, 'train_bg_32766.pt'))
supervised_count = int(len(samplers_train[0]) * args.semi_ratio)
total_unsupervised_count = int((len(samplers_train[0]) - supervised_count) * args.nmb_category)
unlab_size = [int(ratio * total_unsupervised_count) for ratio in tr_ratio]
if np.sum(unlab_size) != total_unsupervised_count:
unlab_size[0] += total_unsupervised_count - np.sum(unlab_size)
samplers_supervised = []
samplers_unsupervised = []
for samplers in samplers_train:
samplers_supervised.append(samplers[:supervised_count])
samplers_unsupervised.append(samplers[supervised_count:])
samplers_unsupervised[0].extend(samplers_bg)
samplers_unbal_unlab = []
for sampler, size in zip(samplers_unsupervised, unlab_size):
samplers_unbal_unlab.append(sampler[:size])
samplers_semi_unbal_unlab_long = []
for sampler_unb_unl in samplers_unbal_unlab:
samplers_semi_unbal_unlab_long.extend(sampler_unb_unl)
num_classes = len(samplers_train)
list_length = len(samplers_semi_unbal_unlab_long) // num_classes
samplers_unanno = [samplers_semi_unbal_unlab_long[i*list_length: (i+1)*list_length] for i in range(num_classes)]
augmentation = CombineFunctions([add_noise_img, flip_x_axis_img])
data_transform = CombineFunctions([remove_nan_inf_img, db_with_limits_img])
dataset_unanno = DatasetImg(
samplers_unanno,
args.sampler_probs,
augmentation_function=augmentation,
data_transform_function=data_transform)
dataset_anno = DatasetImg(
samplers_supervised,
args.sampler_probs,
augmentation_function=augmentation,
data_transform_function=data_transform)
return dataset_unanno, dataset_anno
def sampling_echograms_test(args):
path_to_echograms = paths.path_to_echograms()
samplers_test_bal = torch.load(os.path.join(path_to_echograms, 'sampler3_te_bal.pt'))
samplers_test_unbal = torch.load(os.path.join(path_to_echograms, 'sampler3_te_unbal.pt'))
data_transform = CombineFunctions([remove_nan_inf_img, db_with_limits_img])
dataset_test_bal = DatasetImg(
samplers_test_bal,
args.sampler_probs,
augmentation_function=None,
data_transform_function=data_transform)
dataset_test_unbal = DatasetImgUnbal(
samplers_test_unbal,
args.sampler_probs,
augmentation_function=None,
data_transform_function=data_transform)
return dataset_test_bal, dataset_test_unbal
def main(args):
# fix random seeds
torch.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
np.random.seed(args.seed)
device = torch.device('cuda:0' if torch.cuda.is_available() else "cpu")
print(device)
criterion = nn.CrossEntropyLoss()
cluster_log = Logger(os.path.join(args.exp, 'clusters.pickle'))
# CNN
if args.verbose:
print('Architecture: {}'.format(args.arch))
'''
##########################################
##########################################
# Model definition
##########################################
##########################################'''
model = models.__dict__[args.arch](bn=True, num_cluster=args.nmb_cluster, num_category=args.nmb_category)
fd = int(model.cluster_layer[0].weight.size()[1]) # due to transpose, fd is input dim of W (in dim, out dim)
model.cluster_layer = None
model.category_layer = None
model.features = torch.nn.DataParallel(model.features)
model = model.double()
model.to(device)
cudnn.benchmark = True
if args.optimizer is 'Adam':
print('Adam optimizer: conv')
optimizer_body = torch.optim.Adam(
filter(lambda x: x.requires_grad, model.parameters()),
lr=args.lr_Adam,
betas=(0.9, 0.999),
weight_decay=10 ** args.wd,
)
else:
print('SGD optimizer: conv')
optimizer_body = torch.optim.SGD(
filter(lambda x: x.requires_grad, model.parameters()),
lr=args.lr_SGD,
momentum=args.momentum,
weight_decay=10 ** args.wd,
)
'''
###############
###############
category_layer
###############
###############
'''
model.category_layer = nn.Sequential(
nn.Linear(fd, args.nmb_category),
nn.Softmax(dim=1),
)
model.category_layer[0].weight.data.normal_(0, 0.01)
model.category_layer[0].bias.data.zero_()
model.category_layer = model.category_layer.double()
model.category_layer.to(device)
if args.optimizer is 'Adam':
print('Adam optimizer: conv')
optimizer_category = torch.optim.Adam(
filter(lambda x: x.requires_grad, model.category_layer.parameters()),
lr=args.lr_Adam,
betas=(0.9, 0.999),
weight_decay=10 ** args.wd,
)
else:
print('SGD optimizer: conv')
optimizer_category = torch.optim.SGD(
filter(lambda x: x.requires_grad, model.category_layer.parameters()),
lr=args.lr_SGD,
momentum=args.momentum,
weight_decay=10 ** args.wd,
)
'''
########################################
########################################
Create echogram sampling index
########################################
########################################'''
print('Sample echograms.')
dataset_unanno, dataset_anno = sampling_echograms_full(args)
dataloader_unanno = torch.utils.data.DataLoader(dataset_unanno,
shuffle=False,
batch_size=args.batch,
num_workers=args.workers,
drop_last=False,
pin_memory=True)
dataloader_anno = torch.utils.data.DataLoader(dataset_anno,
shuffle=False,
batch_size=args.batch,
num_workers=args.workers,
drop_last=False,
pin_memory=True)
dataset_test_bal, dataset_test_unbal = sampling_echograms_test(args)
dataloader_test_bal = torch.utils.data.DataLoader(dataset_test_bal,
shuffle=False,
batch_size=args.batch,
num_workers=args.workers,
drop_last=False,
pin_memory=True)
dataloader_test_unbal = torch.utils.data.DataLoader(dataset_test_unbal,
shuffle=False,
batch_size=args.batch,
num_workers=args.workers,
drop_last=False,
pin_memory=True)
# optionally resume from a checkpoint
if args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
args.start_epoch = checkpoint['epoch']
# remove top located layer parameters from checkpoint
copy_checkpoint_state_dict = checkpoint['state_dict'].copy()
for key in list(copy_checkpoint_state_dict):
if 'cluster_layer' in key:
del copy_checkpoint_state_dict[key]
checkpoint['state_dict'] = copy_checkpoint_state_dict
model.load_state_dict(checkpoint['state_dict'])
optimizer_body.load_state_dict(checkpoint['optimizer_body'])
optimizer_category.load_state_dict(checkpoint['optimizer_category'])
category_save = os.path.join(args.exp, 'category_layer.pth.tar')
if os.path.isfile(category_save):
category_layer_param = torch.load(category_save)
model.category_layer.load_state_dict(category_layer_param)
print("=> loaded checkpoint '{}' (epoch {})"
.format(args.resume, checkpoint['epoch']))
else:
print("=> no checkpoint found at '{}'".format(args.resume))
# creating checkpoint repo
exp_check = os.path.join(args.exp, 'checkpoints')
if not os.path.isdir(exp_check):
os.makedirs(exp_check)
exp_bal = os.path.join(args.exp, 'bal')
exp_unbal = os.path.join(args.exp, 'unbal')
for dir_bal in [exp_bal, exp_unbal]:
for dir_2 in ['features', 'pca_features', 'pred']:
dir_to_make = os.path.join(dir_bal, dir_2)
if not os.path.isdir(dir_to_make):
os.makedirs(dir_to_make)
'''
#######################
#######################
MAIN TRAINING
#######################
#######################'''
epoch = 0
end = time.time()
print('##################### Start training at Epoch %d ################'% epoch)
model.classifier = nn.Sequential(*list(model.classifier.children())[:-1]) # remove ReLU at classifier [:-1]
model.cluster_layer = None
model.category_layer = None
'''
#######################
#######################
PSEUDO-LABEL GENERATION
#######################
#######################
'''
print('Cluster the features')
features_train_anno, input_tensors_train_anno, labels_train_anno = compute_features(dataloader_anno, model, len(dataset_anno), device=device, args=args)
train_anno = [features_train_anno, labels_train_anno]
with open(os.path.join(args.exp, 'train_anno.pickle'), "wb") as f:
pickle.dump(train_anno, f)
features_train_unanno, input_tensors_train_unanno, labels_train_unanno = compute_features(dataloader_unanno, model, len(dataset_unanno), device=device, args=args)
train_unanno = [features_train_unanno, labels_train_unanno]
with open(os.path.join(args.exp, 'train_unanno.pickle'), "wb") as f:
pickle.dump(train_unanno, f)
'''
TESTSET
'''
print('TEST set: Cluster the features')
features_te_bal, input_tensors_te_bal, labels_te_bal = compute_features(dataloader_test_bal, model, len(dataset_test_bal), device=device, args=args)
cp_epoch_out_bal = [features_te_bal, labels_te_bal]
with open(os.path.join(args.exp, 'bal', 'AAA_epoch_%d_te_bal.pickle' % epoch), "wb") as f:
pickle.dump(cp_epoch_out_bal, f)
features_te_unbal, input_tensors_te_unbal, labels_te_unbal = compute_features(dataloader_test_unbal, model, len(dataset_test_unbal), device=device, args=args)
cp_epoch_out_unbal = [features_te_unbal, labels_te_unbal]
with open(os.path.join(args.exp, 'unbal', 'AAA_epoch_%d_te_unbal.pickle' % epoch), "wb") as f:
pickle.dump(cp_epoch_out_unbal, f)
if __name__ == '__main__':
args = parse_args()
main(args)