diff --git a/notebooks/SARRA-Py_grid - Exemple 6 Cameroon-Millet.ipynb b/notebooks/SARRA-Py_grid - Exemple 6 Cameroon-Millet.ipynb index 78226d9..b7f36b5 100644 --- a/notebooks/SARRA-Py_grid - Exemple 6 Cameroon-Millet.ipynb +++ b/notebooks/SARRA-Py_grid - Exemple 6 Cameroon-Millet.ipynb @@ -68,7 +68,7 @@ }, { "cell_type": "code", - "execution_count": 37, + "execution_count": 2, "metadata": {}, "outputs": [], "source": [ @@ -96,7 +96,7 @@ }, { "cell_type": "code", - "execution_count": 38, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -114,20 +114,18 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "First, we define the path towards rainfall and climate datasets. As indicated by their names, the daily rainfall dataset is provided by TAMSAT, and the daily climate dataset is provided by ERA5. These datasets consist of series of geotiff files, one per day. The spatial extent of the rainfall dataset defines the spatial extent of the simulation." + "First, we define the path towards rainfall and climate datasets. As indicated by their names, the daily rainfall dataset is provided by CHIRPS, and the daily climate dataset is provided by AgERA5. These datasets consist of series of geotiff files, one per day. The spatial extent of the rainfall dataset defines the spatial extent of the simulation.\n", + "\n", + "Climate data example for Cameroon can be downloaded from the Zenodo repository at https://zenodo.org/doi/10.5281/zenodo.11092879" ] }, { "cell_type": "code", - "execution_count": 39, + "execution_count": 4, "metadata": {}, "outputs": [], "source": [ - "# we provide the path to the example data\n", - "# rainfall_data_path = \"../data/exemple_data/TAMSAT_v3.1_niger_rfe_filled/\"\n", - "# climate_data_path = \"../data/exemple_data/AgERA5_niger/\"\n", - "\n", - "# alternatively, tap into the climate data that we already have retrieved for Niger, 1983-2022\n", + "# we tap into the climate data that we already have retrieved for Cameroon, 2020-2022\n", "rainfall_data_path = \"/mnt/d/Mes Donnees/SARRA_data-download/data/3_output/CHIRPS_v2.0_Africa_north_cameroon\"\n", "climate_data_path = \"/mnt/d/Mes Donnees/SARRA_data-download/data/3_output/AgERA5_north_cameroon/\"" ] @@ -142,7 +140,7 @@ }, { "cell_type": "code", - "execution_count": 40, + "execution_count": 5, "metadata": {}, "outputs": [ { @@ -168,7 +166,7 @@ }, { "cell_type": "code", - "execution_count": 41, + "execution_count": 6, "metadata": {}, "outputs": [ { @@ -190,7 +188,7 @@ "name": "stderr", "output_type": "stream", "text": [ - " 40%|████ | 2/5 [00:15<00:22, 7.63s/it]" + " 40%|████ | 2/5 [00:16<00:24, 8.06s/it]" ] }, { @@ -205,7 +203,7 @@ "name": "stderr", "output_type": "stream", "text": [ - " 80%|████████ | 4/5 [00:30<00:07, 7.74s/it]" + " 80%|████████ | 4/5 [00:31<00:07, 7.96s/it]" ] }, { @@ -219,7 +217,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "100%|██████████| 5/5 [00:45<00:00, 9.19s/it]\n" + "100%|██████████| 5/5 [00:47<00:00, 9.58s/it]\n" ] } ], @@ -248,7 +246,7 @@ }, { "cell_type": "code", - "execution_count": 42, + "execution_count": 7, "metadata": {}, "outputs": [ { @@ -615,9 +613,9 @@ "Dimensions without coordinates: time\n", "Data variables: (12/13)\n", " rain (time, y, x) float32 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0\n", - " tpMoy (time, y, x) float32 nan nan nan nan ... 26.06 26.06 25.87\n", - " ET0 (time, y, x) float32 nan nan nan nan ... 3.446 3.446 3.293\n", - " rg (time, y, x) float32 nan nan nan nan ... 22.38 22.38 22.37\n", + " tpMoy (time, y, x) float32 nan nan nan nan ... 23.14 23.14 23.08\n", + " ET0 (time, y, x) float32 nan nan nan nan ... 2.131 2.131 1.954\n", + " rg (time, y, x) float32 nan nan nan nan ... 18.82 18.82 18.29\n", " profRu (y, x) float32 1.15e+03 1.15e+03 400.0 ... 1.5e+03 1.5e+03\n", " epaisseurSurf (y, x) float32 200.0 200.0 200.0 ... 200.0 200.0 200.0\n", " ... ...\n", @@ -626,7 +624,7 @@ " runoff_rate (y, x) float32 0.32 0.32 0.32 0.32 ... 0.35 0.35 0.35 0.35\n", " RZPAWC (y, x) float32 74.0 76.0 24.0 0.0 ... 110.0 149.0 145.0\n", " ru (y, x) float32 64.35 66.09 60.0 0.0 ... 95.65 99.33 96.67\n", - " dureeDuJour (time, y, x) float64 12.26 12.26 12.26 ... 11.79 11.79