-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathGNAT.FindBraidedNetworkTool.pyt.xml
173 lines (173 loc) · 15.5 KB
/
GNAT.FindBraidedNetworkTool.pyt.xml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
<?xml version="1.0"?>
<metadata xml:lang="en"><Esri><CreaDate>20160216</CreaDate><CreaTime>11074400</CreaTime><ArcGISFormat>1.0</ArcGISFormat><SyncOnce>TRUE</SyncOnce><ModDate>20171019</ModDate><ModTime>202230</ModTime><scaleRange><minScale>150000000</minScale><maxScale>5000</maxScale></scaleRange><ArcGISProfile>ItemDescription</ArcGISProfile></Esri><dataIdInfo><idCitation><resTitle>Find Braids In Stream Network</resTitle></idCitation><idAbs><DIV STYLE="text-align:Left;"><DIV><DIV><P><SPAN>The </SPAN><SPAN STYLE="font-weight:bold;">Find Braids in Stream Network</SPAN><SPAN> tool used to determine if segments/branches are part of a braided section of a stream network. This is useful for data validation and repair of the stream network. Can use shapefiles or geodatabase feature classes.</SPAN></P></DIV></DIV></DIV></idAbs><searchKeys><keyword>GNAT</keyword></searchKeys></dataIdInfo><distInfo><distributor><distorFormat><formatName>ArcToolbox Tool</formatName></distorFormat></distributor></distInfo><tool name="FindBraidedNetworkTool" displayname="Find Braids In Stream Network" toolboxalias="GNAT" xmlns=""><parameters><param name="InputStreamNetwork" displayname="Input Stream Network" type="Required" direction="Input" datatype="Feature Layer" expression="InputStreamNetwork"><dialogReference><DIV STYLE="text-align:Left;"><DIV><DIV><P><SPAN>Stream network features to check for braids. This tool modifies the input dataset</SPAN></P><P><SPAN>Adds (or overwrites) an `IsBraidedReach` attribute field:</SPAN></P><UL><LI><P><SPAN>Value = 1: Segment is part of a braided section of the network</SPAN></P></LI><LI><P><SPAN>Value = 0: Segment is not part of a braided section of the network.</SPAN></P></LI></UL></DIV></DIV></DIV></dialogReference></param></parameters><summary><DIV STYLE="text-align:Left;"><DIV><DIV><P><SPAN>The </SPAN><SPAN STYLE="font-weight:bold;">Find Braids in Stream Network</SPAN><SPAN> tool used to determine if segments/branches are part of a braided section of a stream network. This is useful for data validation and repair of the stream network. Can use shapefiles or geodatabase feature classes.</SPAN></P></DIV></DIV></DIV></summary></tool><mdHrLv><ScopeCd value="005"/></mdHrLv><Binary><Enclosure rel="side-panel-help"><Data EsriPropertyType="Image" OriginalFileName="thumbnail.jpg">/9j/4AAQSkZJRgABAQEAyADIAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsK
CwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQU
FBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCAFCAZADASIA
AhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA
AAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3
ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm
p6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA
AwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx
BhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK
U1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3
uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9U6KK
KACiiigAooooAKKKKACiiigDnfHHgfTfHmjmyv0KSIfMtruPiW3kHR0bsf51ynhXxzqXhfWIvCvj
Vgt452afrO3bDfKOgJ6LJ6jvXptY/irwnpnjPR5tN1W2W4t5OR2ZG7Mp7Eetenh8VHk+r4lXp/jF
91+q2frqeBjcvqOr9dwLUay0d/hml9mX/tst4+aunsUV5ToPinVPhhqtv4b8XTtd6TMwi0vxAw4b
0inPZh2bv/L1XOeRyKwxOFlhpLW8Xqmtmv63W66nXgMwp4+DsnGcdJRe8X5+T6NaNaoWiiiuM9QK
KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoo
ooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigChrug2HibS7jTtTtku7OddrxSDj6j0I
9RXmvh/Vr74Sa9beGNduWu/Dd42zSNVmPzQtni3lP8j/AJHrNZfibw1p/i7RbnStTgW4tLhdrKeq
nsynsR2NejhcVGmnQrq9OW66p/zLzX4rRnhZjl860o4vCNRrw2fSS6wl3i/vi9V56lFeX+B/Emoe
C9ej8EeJ52nZgf7H1WTpdxDpGx/56KPz/n6hWOKw0sNPlbunqmtmu6/rR6M68vx0MfS50uWSdpRe
8ZLdP9Hs1ZrRhRRRXIekFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR
RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBz3jjwTYeP
NCk06+UowPmW9zHxJbyj7roexH61gfDPxhfXFxeeFvEbBfEulgbpMYF3D/DMvrnv716BXC/E7wXd
61Da65oTi38UaTmS0k7TL/FC/qrD9a9bC1YVYfVK7tF/C/5Zf5PaX39D5vMcNUw9VZng43nFWnFf
bh2/xR3h847PTuqK5zwF41tfHfh+LULdTBOpMN1av9+3mXhkYex/SujrzqtKdGbp1FZrc9zD4ili
qMa9GXNGSun5BRRRWR0BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUU
UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAeW+OdDvvAW
vyeOfDsJmiYf8TvS06XMQ6zIP+ei9fcD659D0LXLLxJpFrqenTLcWdygeORfT0PoR0Iq8RkYIyK8
u0fTx8M/ifFpdpK0Xh3xEks0No3+rt7tcFgnoGXnHtXsxksfR5J/xILR/wA0Vun5xWqfbToj5WcJ
ZPilVp/wKskpL+ScnZSXlN6SX8zUlvI9Sooorxj6oKKKKACiiigAooooAKKKKACiiigAooooAKKK
KACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo
AKKKKACiiigArzz44Qm18Iw67F8tzod5DfI467QwVx+KkivQ6wvHWlDXPBmt2BXd59nKoGO+04/X
Fd2BqKjiac3smr+nX8Dyc2oPFZfXpR+JxdvVK6fydmbNvMLi3ilX7sihh+IzUlcp8K9VOtfDrw/d
sd0jWcayf76ja36g11dYV6bo1Z0n9ltfcdeErrFYeniI7Tin96uFFFFYHWFFFFABRRRQAUUUUAFF
FFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUU
UAFFFFABRRRQAUUUUAFFFFABSdeDS0UAecfA8mx0HWdEb72kavdWuO+0vvB+mHr0evIPh74psT8a
PHOlW7N5N28c0LEYV5olCTgHuclenYGvX69fNYSjinOStzpS/wDAkm/xufM8OVqdTL40qcrqnKUP
/AJOK/8AJUn6MKKKK8g+mCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo
oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArj/it4muvDHg+
eTT/APkKXkiWVmT2lkbaG/DJP4V2FecePP8AidfErwTow+ZIJJtUmXtiNdq5/wCBN+lejl8IzxEX
NXjG8n6RTdvnax4edValPBTjSdpzagn1Tm1G69L3+RieK/h//wAIB4D0TVdHV7nVfDE/9oSSMfnu
Uf8A4+gT/tAk/RcV6xpepW+saba39q/m21zEs0T+qsAQfyNTzQpcQvFKiyRyKVZWGQQRgg15x8I5
m8N3mt+B7l/n0iYzWJY8yWchLJj12klSfWumdSeOw0p1HecHf1jJ6/dLX/t5nBSoU8nx9OnRXLSr
RUbdFOC93/wKCt/24u56VRRRXin1YUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQ
AUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFeceHf
+J18afFF996LS7O309c/wu2ZGx+BFejMwVSx6AZrzr4Jqb7SNc11hl9W1a4nVvWNW2J+i16mF9zD
16vko/Nu/wCUWfPZh++xuEw/96U36Ri1/wClTiejV5/8UfCd7cNZ+KfD6AeJNHyyKOPtUP8AHC3r
kZx7/WvQKK5MPiJYaoqkPu6NdU/Jo9LHYOnj6EqFTS+zW6a1Ul5p6oxPBviyy8beHrXVrFv3cww8
bfeiccMje4NbdeTa7G3wf8af2/ANvhLWplj1SMfds7g8LOB2Vujf/qFesKwZQykEEZBHet8ZQjTc
atH+HPVeXeL81+Ks+px5XjKleM8PitK1PSXZ9pr+7Ja+TvHdC0UUV557YUUUUAFFFFABRRRQAUUU
UAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQ
AUUUUAFFFFABRRRQBzvxD1v/AIR3wNruoh9klvZyNGf9vaQo/FiB+NR/DTRf+Ed+H+gaeU2PDZx7
1PUMw3MPzJrnviR/xVXizwz4OT54JZP7V1Je32eE/IrD0eTA/wCA16PXqVf3ODhT6zfN8l7sf/bv
lY+ew/8AtWaVq6+GlFU1/idpz/DkXqmugUUUV5Z9CUtZ0e08QaVd6bfwrcWd1GYpY27qR+h9D2Nc
B8LdYu/Dmo3XgHW5jJfaanmaddScfbLPOFI/2k+6R7exNemVynj74f2vji1t5BNJp+sWTeZY6lb8
SQP/AFU9xXp4WtT5ZYau7Ql1/ll0f6Py80jwMywtb2kMfg1erDS23PB7xv36xb2emibN3W9c0/w3
pVzqeq3sGn6fbIZJrm4cIiKOpJNeF2vxg+InxouWf4V6JY6T4WjLAeKPFMcgS8IOP9HgUhivH324
6jAPXzHUby9174vW2i/tD3sul6NbyqNCs4k8vRNRkH/LSaYHl+h2PgD27/ZdrDBb2sMVtHHFbRoF
jSIAIqgcBQOAMelfMqcsXOUYy5YxdtPif+S7dX5H61VwtDh7D0ataiq1arFSTlrSimtlbSpNbS1c
IvS0nqvEf7A/aI/6GvwJ/wCCy5/+Ko/4TT42+Bfm8ReC9H8b2C8vd+E7pobhV/695vvt7Kwr3Oit
fqttY1JJ+t/zueb/AG6qnu18JRlHsocj++Di/wAbd0zy/wAD/tGeDfG2rx6Ibi68P+I24/sXXbdr
S53DqqhuHP8Auk16hXG/E34S+Gvi3oZ07xDYLOyHfbXkfyXFrIOjxyDlSDz6V5D4P+NF18B9Tm8C
/F3U3jgt+dE8WTxs0OoW+cKkpUHbKvfPXGc9zPt54eSWIa5XtLZej7eu3odCyvDZvSlUyeMvax1l
SfvSa/mptJOSXWNuZLW8ldr6QorJ8N+LNF8ZaauoaFq1nrFkTjz7GdZUB9CVJwfY81rV3qSkrrY+
SqU50punUi1Jbp6NBRRRTMwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoorF8
YeLLHwT4futW1BsQwj5Y1+9K5+6ijuSa0p05VZqnBXb0RjWrU8PTlWqy5YxV230SNO8vbfT7WS5u
p47a3jBZ5ZWCqoHck153N8VtQ8UXbWngTRv7aWNisurXhMNimOoVurn6fXmqmg/Dm+8eRwa349nm
uXlPnQaCrbLW1U8qGUffYDGc9DXqNtaw2dvHBbxJBDGNqRxqFVR6ADpXqSWFwbcX+9mv/AF92svw
Xqj52EswzSKnF/V6T22dRr53jC/pKX+Fnnv/AAtDWtB48UeC9SsYx1vNLZb2DH95tuGUfga6nwv4
60HxlC0mjanBe7fvxqdsif7yHDD8RW9XH+K/hZoXiq6F80Umm6uhymp6e/kzg+5H3vxqFUwdfScH
TfeOq/8AAXr90vkbOjmmE1o1VWj2mlGXynFKPycNe6Owory1vEPiL4Y61p1t4k1BNb8NX0otk1Zo
hHNayn7omxwVPTdxivUq5sRhpYflldSjLZrZ/fZ3XVM78Fj4YznhyuE4O0oytdX1WzaafRptPXqm
FFFFcZ6YUUUUAFFFFABVe/v7fS7Ke8u5kt7WBDJJLIcKqjqSamkkSGNpJGVEUFmZjgADqTXkTGb4
662UBkh8A2EvzEZU6pKp6f8AXMH8/wCXfhcMq7c6j5acfif6Lu30X6Jnj5jj3hFGlRjz1p6Rj+bf
aMd5P5LVpGx8KAfE2peIPG0yOF1WcW+n+YpUrZxcIQD03tuY/QV6PTIYkt4kiiRY40UKqKMBQOAA
PSn1liq/1iq5pWWiS7JKyX3G+X4T6jho0ZS5pauT2vKTbk/m29Oi0CiiiuU9EKKKKAMjxV4T0bxx
odzo+vabb6tplwu2S2uUDKfcehHYjkdq8O/4Vv8AEf8AZ/8A33w6v38c+DYuW8H63Pi6tkzki0uT
1HXCP0A43E19EUVzVcPCq+baS6rf/g+juj3MvzjEYCDoWVSjLWVOavF+fRxl/ei4y8zzH4cftEeD
/iNI9it2+geIoG8u50DW1+y3sL9xsb7w91yPpXpqsGAIOQehFcj46+Efg34lxhfE3hvT9XcLtWea
ECZR2AkGGA+hrzw/s26r4dJHgn4neJvDdt/DY3UiahAvsolBKjpwDxWXNiaekoqfmtH9z0/E75UM
lxr5qNaWHb+zNOcV6Th73onD5s9yqG6s7e+haG5gjuImGGSVAykehBrxP+yPj/4bwbfXfCXi6Jek
d5aS2UrAerKSMn6UL8X/AIraKxi1n4OXF/J2l0HVYZY//H9po+tRWlSEl8m/yuJZBWk+bCYilU9K
kYv7qnI/wLHir9mPTE1lvEfw71Wf4a+KOC8+kxg2V1g52z2uQjgnuMc8nNV/Cvxq8UeD/Gem+C/i
xpNjpl9qW5NL8SaXKTp+oSD/AJZlW+aKQjHynqemOMp/wtL4yaw3/Er+EcGnKT11rWo0x74jDe36
1zPxE+Hfxp+Nnhm40HxBZ+CtDsJmV0dHnuZoHU5WSNht2uPX61wTlGF54SMk+1mov1vZL1WvqfW4
ejVxCjhuIK1KVO1ud1ISqw7OLg5Skl/JK8baLleq+maK8j8KzfEz4d+HbCw8QWlt46FtEI31HTX8
m5fHALI/DHHUg810+h/F/wANaxci0lvG0jUO9nqkZtpPw3cH8DX1UcFiJ0lVjG6au7NO3qle1vM/
Fa2aYGhip4SdWzUmk5JxUrO14uSXMnura23SO1opFYMoIOQeQRS1xHphRRRQAUUUUAFFFFABRRRQ
AUUUUAFFFFABRRRQAUUUUAVtR1C20mxnvbyZLe1gQySyyHCqoHJNeX+F9Pufi14ig8WavC8Ph2yf
OjafKMeawP8Ax8uP/QQahmeT46eIDBGXTwHps372QZH9pzqfuj1jU/nXrkUSQxpHGixxoAqoowAB
0AHpXty/4TafKv40lr/cT6f4n17LTdu3yUP+F6sqj/3WD0/6eSX2v8EX8P8ANLXZK76KKK8Q+tCi
iigDJ8VeG7Txf4d1DR71c295EYy2MlD/AAsPcHBH0ri/h54zvdL1BPBXisC31+1jC2t3k+VqMIGA
6E/x4HI69fcD0quf8Z+B9K8daclrqUbh4W8y3uoGKTW7/wB5GHQ/pXpYbEU+R4fEfA9breL7rv5r
qvNI8HH4Ov7WOOwTSqxVmn8M43vyt9Gt4y6Nu902dBRXm0fw28XpGsR+JWotCo24+wQb8f7x5z70
7/hVWtS83HxB12Q9vLEcf8hVfVcMt8RH7p//ACKI/tHHPbAz+cqf6TZ2uueI9K8N2pudV1C20+D+
/cShAfYZ6n2FcUfjE+sc+FfC+reJIB/y+CMWtu3+68mNx/CtHRPg/wCG9Juhe3FrJrep977VpDcy
fhu4H4Cu1HHA4FHNgqPwxdR+fur7lq//AAJegezzXFfHONCPaK55f+BSXKvTkl6nnH/Cd+Ppj+4+
Gjqh4Dz61AmPquM0v/CSfEyblPBul24HUTaqGJ+m1a9Hoo+uUlthof8Ak/6zD+y8S/ix1V/Kkvyp
I8p1Xwz4/wDiAsOleIX0nRdAkfdef2VNI886D/lllhgAnqf59D6bpum2uj2EFlZQJbWkCCOKGMYV
VHYVZorCvi514qnZRiui0V+/mzrweW0sHUlW5pTqSsnKTu7LZLRJLrZLfVhRRRXEesFFFFABRRRQ
AUUUUAFFFFABRRRQAUUUUAFZmueGdJ8SWxt9V0621CE/w3EQb8s9K06KuM5U2pQdmZ1KcK0XCpFS
T6PVHkLpq/wLuC8QuNb8BOxLx8yXOlZPJHdouT9P/QvUtJ1ey17TYL/T7mO8s513xzRNlWH+Pt2q
2yh1KsAykYIIyDXkXiTQ3+DOpjxNoDPF4bnuFGr6QozFGrHHnxD+EjjIHGPYYHsxlDM3yy0rdH0n
5PtLs9n111PlJRq8Pp1KfvYVbx60l3j3gusd4r4br3V69RUcE0dzDHNE4kikUOjr0IIyCKkrw9j6
5NNXQUUUUDCiiigAooooAKKKKACiiigAooooAKKKKAKmk6TaaHpttp9hAltZ26COKKMYCqKt0UVU
pOTcpO7ZEIRpxUIKyWiQUUUVJYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUU
UUAFFFFABRRRQAUUUUAFFFFABVbUtPg1bT7myuoxLbXEbRSIwyCpGDVmimm4tNbkyjGcXGSumeb/
AAj1K40eTUvBOpSM97orf6LI/We0b/Vt74+6foK9Irz34peGb9ZLPxd4fTd4g0cEmEHAvLfq8J9T
jJHv74rqvCXiix8Z+H7PV9Pffb3CZ2n70bdGRh2IOQa9bGxVeKxtPaXxeUuvyluvmuh83lVR4Ocs
qrPWGsH/ADU+nzh8Mvk/tGxRRRXkH0wUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR
RQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF
ABXkmrZ+DHjKTWI1ZfBmtyj7fGikrYXR4EwA6I3Q+/4CvW6gvrG31KzmtLuFLi2mQxyRSLuV1IwQ
RXdhcQqEmpq8JaSXdeXmt0+/keRmWBeMhGVKXLVg7wl2fZ94yWkl280mSQzR3MMcsTrLFIoZJEOV
YEZBB7in15BYXl18C9Wj0zUHe58CXkpFnfOSW01zz5Uh/wCefoe3516zaXkF/bx3FtNHcQSDckkb
BlYHuCKeKwrw7U4PmhLaXf8Aya6r9LMWX5isYpU6keStDSUOqfdd4veMuq7O6U1FFFcB7AUUUUAF
FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUU
UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAEN3ZwX9vJb3MMdxBIMPHKoZWHoQa84uvhXf+
E5pL7wHqZ0piS76PdEyWUp9AOqH3Fem0V2YfFVcPdQej3T1T9U9DzMZluGx1pVY2lHaSdpR9JLVe
mz6pnnmi/F6CDUE0nxbYv4W1cnCfaTm2n945en4HFegQzR3ESyxSLLGwyroQQR7EVV1bRbDXrNrT
UrKC/tm6w3EYdT+BriJvgfodtK0+hXuqeGLhjktpd4yofYo2Vx7ACul/Uq+utN+nNH8+Zf8Akx58
Vm2D933a8e7fJP56OEn5+56HolFecf2T8S/Dv/HnrOk+Kbdf+WWpW5tZ8egePKk+7Cj/AIW5e6L8
vijwdrGjAfeurVRe2yj1Lx8j8qX9n1J/wJRn6PX/AMBdpfgV/bdGlpjKc6P+KPu/+Bx5oL5yR6PR
XK6P8VPCOvRhrPxDYMT/AMs5ZhFJ/wB8Phv0rpIbyC5QPDPHKh6Mjgg1xVKFWi7VYOL800etQxmG
xUeahUjNeTT/ACJqKKKwOsKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAC
iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDC1jwL4d
8QSGTUdDsLyVusktupc/8Cxmubm+AvgeRy8Gj/YZT/y0tLiWM/o2K9BrjPGnxIh8M6hbaPp1hNr3
iK6UtDptqwBVf78jHhF9zXqYSvjpSVLDVJL0k0reetkvXQ+dzLCZRTg8Rj6MH5uCbbeyWjbb6Jas
yn+DFvZqXsPFfiWw2jOP7RMiL/wFh9a5r4dw/EHXPDKa3p/iuK7gmnmFtbataAh4VcqrFkwwY4Nd
BN4N8ceNLUx+I/EUOiWM4xLpmiRfMVPVTO3PI4OBivQNG0e08P6TaabYxeTZ2saxRR5zhQMDnufe
vSq46VGi4TnGrNtfZTSSvdXa1bdtu2+p4WGyiGKxKq0qU8PSjF/bcXKTas+WMnZRSekkm29tDhf+
Fh+J/D/HiPwdcNEv3rzRpBcpj1KcMPpg1t+H/ip4Y8TTi2tNUjjvDx9kugYZgfTa2DmusrB8TeBt
C8YWph1bTYLruJNu2RD6q45B9wa8322Drfxabg+8X/7bK/8A6Uj3Xhczwyvh66qLtUVn/wCBwtb5
wkb1FeXf2B41+HIZtBu/+Eu0ROf7L1GTbdxL6RTdG+jfqa6Hwj8UtD8XXBsUkk03WY+JdK1BDDcI
e42n734Z/CpqYGag6tF88F1XT/Et1+XZs0oZvSlUWHxcXRqvZS2l/gl8MvRPm7xR2FFFFeae8FFF
FABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUU
AFFFFABRRRQAUUUUAFFFFABRRRQBz/j/AMSHwj4M1fV02+dbW7NEG6NIeEH4sQPxrJ+GPgVPC+ln
Ub15L7xHqarPqF9cf6xnIB2D0VegA9Kyfi/dQ65qHhnwfHIstzqWoxT3NuvLC1iJdmPoMqMZ64Pp
XplevNyw+ChBaOo235xVkvle7+SPmaUYY7NqlWWqoJRj2U5Xcn68rgr7pNrqFFFFeQfTBRRRQAVz
/izwDoHjeGNNZ02K7aI5jmyUlj/3XUhgPbOK6CitadWdGSnTk011WjMK+Ho4qm6VeClF7ppNP5MK
KKKyNwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK
KKKACiiigAooooAKKKKACiiigAoori/FXxU0rw7qI0q2iuNc11hldN05PMkHu56IPc1vRoVcRLkp
Ru/637LzOPFYzD4Gn7XETUVtr1fZLdvyWp2ZOBk8CvN9Q+I2q+Kden0TwLb2t2bXK3mtXu42kDf3
F2/ff6cCq8nhvxt8RIiuvXsfhbRpRhtN05t9zIp/hkl6Djghfzr0DQPD+n+F9Jg03TLVLSzhGFjQ
fmT6k+pr0VHD4JNzaqVOiWsV5t/afZLTu3seG6mNzWSjSUqNHrJ6Tl5RW8F3ckpdEluYHgX4er4V
ur/VL++fWvEOoNm51KZAh2jpGi5OxB6D0HoAOwoorzq1apiJupUd3/XTZJdke7hcJRwVJUaEbRXq
9Xq229W29W27t7hRRRWB1hRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU
UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUU13WNGd2CooyWY4AHrXnWr/Fo6lf
SaT4LsG8S6mp2yXCnbZ259Xl6H6CurD4WriW1TWi3eyXq3ojzsZmGGwEU68rN7Jayk+0YrVv0R6N
061zviL4i+GvCoI1TWrS2kHPk+ZvlP0RcsfwFcxD8LdX8QKJfFvirULx25ax0x/stsv+z8vzMPqa
6bw78OPDPhQhtL0W0tpQc+d5e+XPrvbLfrXX7LB0f4lRzfaKsv8AwKX/AMiecsRmmKV6NGNJPrN3
f/gENP8AydHG3HibxN8U5ms/DEVx4c8PZAm127iKTzL6W8Z5H+8f079r4N8CaP4FsDbaXb7XkO6a
6lO+adv7zueSf0roaKzrYxzh7GlHkp9l185Pq/wXRI3wuVxpVfrWJn7Wt/M1ZRXaEdorvu39psKK
KK849sKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAC
iiigAooooAKKKKACisnVfFmi6HGz6hqtnaKvXzZ1B/LNclcfGjSryY2/hyxvvFN12/s+E+UPrK2F
x+NdlLB4isrwg7d+n3vQ8vEZpgsK+WtVSl2veT9Iq7fyR6HSbgOprzn7H8RvFX+vu9P8HWbfwWq/
a7rH+82EH5Uv/CiPDl5++1ebU9c1Dqt9e30nmRn/AGNpAUe2K6PqtCn/AB6yv2iub8bqP3NnF/aG
Mr64TCu3eo/Zp+itKf3xR6NRXnH/AAqG603nQ/GviDTSPux3E4u4l9grjp+NH9g/E2x+W38TaLqC
jo19YMjH67Gx+VH1ShL+HXj81JP8mvxD+0sXT0rYOfrFwkv/AEqMv/JT0eivOPM+Klr96Hw1ff8A
XNpov5560jeIviaqmP8A4RDSXdukw1T5Vz3K7cnFH9nyfw1IP/t9L87B/bVOPx0Kq/7hyf8A6Smj
0dmCqSxAA5JNcFrXxk0a2vn03Q4bjxXrA/5dNJTzFQ/7cv3VGepycelUl+Fmq+LCsvjjxBNqUR5O
kabm3sx7Nj5nH1Nd5oug6d4dsUs9LsYLC1XpHbxhB9Tjqfc80+XB4f437SXZaR+96v5JepHtM0x3
8KKoQ7ytKfyinyx9W5ecTz0eA/EvxEkE/jW+Gm6VnKeH9LlIUj/ptKOWPsvHv2r0TSdHsdBsY7PT
rSGytYxhYYECqPwFXaK56+Mq4hKD0itorRL5d/N3fmd2DyzD4KTqxvKpLecneT+fRf3VaK6IKKKK
4j1gooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK
KACiiigAooooAr399b6XYz3l3KsFrAjSSyucBVAySfwrgW+Nmnamxj8NaPq/ih+iy2VqyW+fQyvg
CvRHRZEZHUMrDBVhkEelKqhFCqAqgYAA4FddGpQppurByfTWy+el396PMxdHGVpJYesqcevu80vk
27L5xZ5z9q+JniL/AFNlpHhO3b+K4kN5cL+C4Q/nR/wqG41j5vEnizWNXJ6wwzfZYR9FTB/WvR6K
6f7Qqw/gRjD0Wv8A4E7y/E4f7Ew9TXFznV/xSdv/AACPLD/yU43Svg/4O0eQSQ6DayTD/ltcL5r/
AJtmutt7WGziEUESQxjokahQPwFS0Vx1cRWru9Wbl6ts9XD4LC4NcuGpRgvJJfkFFFFc52BRRRQA
UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABR
RRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFF
FABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH/2Q==</Data></Enclosure></Binary></metadata>