forked from sbhaga5/Alaska-Model
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathAlaska BModel.R
403 lines (336 loc) · 18 KB
/
Alaska BModel.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
rm(list = ls())
library("readxl")
library(tidyverse)
library(dplyr)
library(zoo)
#setwd(getwd())
#source("utility_functions.R")
FileName <- 'Alaska BModel Inputs.xlsx'
EntryYear <- 1980:2052
Years <- 1980:2154 #(why 2152? Because 120 - 18 + 2052 = 2154)
YearStart <- 2022
Age <- 18:120
YOS <- 0:70
#RetirementAge <- 20:120
RetYear <- 2005:2154
ModelPeriod <- 100 #Projection period (typically 30 years)
MinAge <- 18 #Age of the typical youngest member
MaxAge <- 120 #Max age from mortality assumptions
YearStart <- 2022 #Year of the latest val report
MinYear <- 1980 #No hard rule about this. Should get back to about 40 years from now.
MaxYear <- YearStart + ModelPeriod + MaxAge - MinAge
EntryYear <- MinYear:(YearStart + ModelPeriod)
RetYear <- MinYear:(YearStart + ModelPeriod)
Years <- MinYear:MaxYear
Age <- MinAge:MaxAge
YOS <- 0:70
RetirementAge <- Age
#Assigning individual Variables
model_inputs <- read_excel(FileName, sheet = 'Main')
for(i in 1:nrow(model_inputs)){
if(!is.na(model_inputs[i,2])){
assign(as.character(model_inputs[i,2]),as.double(model_inputs[i,3]))
}
}
#Import key data tables
SurvivalRates <- read_excel(FileName, sheet = 'Mortality Rates')#Updated* (to RP-2010 General)
MaleMP <- read_excel(FileName, sheet = 'MP-2017_Male') #Updated* (to MP-2019)
FemaleMP <- read_excel(FileName, sheet = 'MP-2017_Female')#Updated* (to MP-2019)
### Addition ###
SalaryGrowthYOS <- read_excel(FileName, sheet = "Salary Growth YOS")#Added* (to combine YOS & AGE increases)
SalaryEntry <- read_excel(FileName, sheet = "Salary and Headcount") %>% #Updated*
select(entry_age, start_sal, count_start)#Updated*
TerminationRateAfter8 <- read_excel(FileName, sheet = 'Termination Rates after 8')#Updated*
TerminationRateBefore8 <- read_excel(FileName, sheet = 'Termination Rates before 8')#Updated*
RetirementRates <- read_excel(FileName, sheet = 'Retirement Rates')#Updated*
##############################################################################################################################
IsRetirementEligible_Regular <- function(Age, YOS, EntryYear){
Tier1Check = ifelse((Age >= 55 & YOS >= 8) | (YOS >= 20), TRUE, FALSE)
Tier2Check = ifelse((Age >= 60 & YOS >= 8) | (YOS >= 20), TRUE, FALSE)
Check = ifelse(EntryYear >= 1990, Tier2Check, Tier1Check)
return(Check)
}
IsRetirementEligible_Early <- function(Age, YOS, EntryYear){
Tier1Check = ifelse((Age >= 50 & YOS >= 8), TRUE, FALSE)
Tier2Check = ifelse((Age >= 55 & YOS >= 8), TRUE, FALSE)
Check = ifelse(EntryYear >= 1990, Tier2Check, Tier1Check)
return(Check)
}
IsRetirementEligible <- function(Age, YOS, EntryYear){
Check = ifelse(IsRetirementEligible_Regular(Age, YOS, EntryYear) | IsRetirementEligible_Early(Age, YOS, EntryYear), TRUE, FALSE)
return(Check)
}
RetirementType <- function(Age, YOS, EntryYear){
Check = ifelse(IsRetirementEligible_Regular(Age, YOS, EntryYear), 'Regular',
ifelse(IsRetirementEligible_Early(Age, YOS, EntryYear), 'Early','None'))
return(Check)
}
SeparationType <- function(Age, YOS, EntryYear){
Check = ifelse(IsRetirementEligible(Age, YOS, EntryYear) == T, 'Retirement',
ifelse(YOS > 5, 'Termination Vested', 'Termination Non-Vested'))
return(Check)
}
##############################################################################################################################
#Custom function to calculate cumulative future values
cumFV <- function(interest, cashflow){
cumvalue <- double(length = length(cashflow))
for (i in 2:length(cumvalue)) {
cumvalue[i] <- cumvalue[i - 1]*(1 + interest) + cashflow[i - 1]
}
return(cumvalue)
}
LinearInterpolation <- function(Data,AgeStart,AgeEnd,Columns,Increment){
TempMatrix <- matrix(0,nrow= (AgeEnd - AgeStart + 1),Columns)
TempMatrix[,1] <- AgeStart:AgeEnd
colnames(TempMatrix) <- colnames(Data)
TempMatrix <- as.data.frame(TempMatrix)
for(i in 1:nrow(Data)){
Index <- which(TempMatrix[,1] == as.double(Data[i,1]))
for(j in 2:Columns){
TempMatrix[Index,j] <- Data[i,j]
}
}
for(i in 1:(nrow(Data)-1)){
for(k in 2:Columns){
for(j in 1:(Increment - 1)){
BaseRowIndex <- (i-1)*Increment + 1
Addition <- (Data[(i+1),k] - Data[i,k]) / (Data[(i+1),1] - Data[i,1])
TempMatrix[(BaseRowIndex+j),k] <- Data[i,k] + (Addition*j)
}
}
}
return(TempMatrix)
}
CompoundSalaryIncrease <- function(Data){
#Data[,1] <- 1
for(i in 2:nrow(Data)){
for(j in 2:ncol(Data)){
#Column 1 is the Age label so we want to avoid computing j-1 at j=2
if(j > 2){
Data[i,j] <- Data[i,j]*Data[i-1,j-1]
}
}
}
return(Data)
}
##############################################################################################################################
MaleMP <- MaleMP %>%
pivot_longer(-Age, names_to = "Years", values_to = "MP_male") %>%
mutate(Years = as.numeric(Years))
MaleMP_ultimate <- MaleMP %>% #ultimate rates = rates for the last year in the MP table
filter(Years == max(Years)) %>%
rename(MP_ultimate_male = MP_male) %>%
select(-Years)
MaleMP_final <- expand_grid(Age, Years = 1951:MaxYear) %>%
left_join(MaleMP, by = c("Age", "Years")) %>%
left_join(MaleMP_ultimate, by = "Age") %>%
mutate(
# MP_final_male = ifelse(Years > max(MaleMP$Years), MP_ultimate_male, MP_male)
#Since the plan assumes "immediate convergence" of MP rates, the "ultimate rates" are used for all years
MP_final_male = MP_ultimate_male) %>%
group_by(Age) %>%
mutate(MPcumprod_male_raw = cumprod(1 - MP_final_male),
MPcumprod_male_adj = MPcumprod_male_raw / MPcumprod_male_raw[Years == 2014]) %>% #Adjust the mort improvement rates for the 2014 base year
ungroup()
FemaleMP <- FemaleMP %>%
pivot_longer(-Age, names_to = "Years", values_to = "MP_female") %>%
mutate(Years = as.numeric(Years))
FemaleMP_ultimate <- FemaleMP %>%
filter(Years == max(Years)) %>%
rename(MP_ultimate_female = MP_female) %>%
select(-Years)
FemaleMP_final <- expand_grid(Age, Years = 1951:MaxYear) %>%
left_join(FemaleMP, by = c("Age", "Years")) %>%
left_join(FemaleMP_ultimate, by = "Age") %>%
mutate(
# MP_final_female = ifelse(Years > max(FemaleMP$Years), MP_ultimate_female, MP_female)
#Since the plan assumes "immediate convergence" of MP rates, the "ultimate rates" are used for all years
MP_final_female = MP_ultimate_female
) %>%
group_by(Age) %>%
mutate(MPcumprod_female_raw = cumprod(1 - MP_final_female),
MPcumprod_female_adj = MPcumprod_female_raw / MPcumprod_female_raw[Years == 2014]) %>%
ungroup()
MortalityTable_int <- expand_grid(EntryYear, entry_age = SalaryEntry$entry_age, Age, YOS) %>%
mutate(term_year = EntryYear + YOS,
Years = EntryYear + Age - entry_age) %>%
filter(term_year <= Years) %>%
arrange(EntryYear, entry_age, YOS, Age)
#Join base mortality table with mortality improvement table and calculate the final mortality rates
MortalityTable <- MortalityTable_int %>%
left_join(SurvivalRates, by = "Age") %>%
left_join(MaleMP_final, by = c("Age", "Years")) %>%
left_join(FemaleMP_final, by = c("Age", "Years")) %>%
#MPcumprod is the cumulative product of (1 - MP rates), starting from 2011. We use it later so make life easy and calculate now
mutate(
RetirementCond = IsRetirementEligible(Age, YOS, EntryYear),
mort_male = ifelse(RetirementCond == T, RP_2014_Male_Healthy,
RP_2014_Male_Employee * ScaleMultiple) * MPcumprod_male_adj,
mort_female = ifelse(RetirementCond == T, RP_2014_Female_Healthy,
RP_2014_Female_Employee * ScaleMultiple) * MPcumprod_female_adj,
mort = (mort_male + mort_female)/2)
#filter out the necessary variables
MortalityTable <- MortalityTable %>%
select(EntryYear, term_year, Years, entry_age, Age, YOS, mort)
#Create a second mortality table for current retirees
MortalityTable_retire <- expand_grid(Age = Age[Age >= 40], Years = Years[Years >= YearStart]) %>%
left_join(SurvivalRates, by = "Age") %>%
left_join(MaleMP_final, by = c("Age", "Years")) %>%
left_join(FemaleMP_final, by = c("Age", "Years")) %>%
mutate(base_age = Age - (Years - YearStart),
mort_male = RP_2014_Male_Healthy * MPcumprod_male_adj,
mort_female = RP_2014_Female_Healthy * MPcumprod_female_adj,
mort = (mort_male + mort_female)/2) %>%
select(base_age, Age, Years, mort) %>%
filter(base_age >= 40) %>%
arrange(base_age)
##############################################################################################################################
#Separation Rates
SeparationRates <- expand_grid(EntryYear, Age, YOS)
SeparationRates <- SeparationRates %>%
mutate(entry_age = Age - YOS,
Years = EntryYear + YOS) %>%
filter(entry_age %in% SalaryEntry$entry_age) %>%
arrange(EntryYear, entry_age, Age) %>%
left_join(TerminationRateAfter8, by = "Age") %>%
left_join(TerminationRateBefore8, by = "YOS") %>%
left_join(RetirementRates, by = "Age") %>%
### Additions ###
#mutate_all(as.numeric) %>%
replace(is.na(.), 0)
#If you're retirement eligible, use the retirement rates, then checks YOS < 5 and use the regular termination rates
SeparationRates <- SeparationRates %>%
mutate(retirement_type = IsRetirementEligible_Regular(Age,YOS, EntryYear),
SepRate_DB = ifelse(retirement_type == "Regular", Unreduced_Ret,
ifelse(retirement_type == "Early", Reduced_Ret,
ifelse(YOS < 8, TermBefore8, TermAfter8)))) %>%
group_by(EntryYear, entry_age) %>%
mutate(RemainingProb_DB = cumprod(1 - lag(SepRate_DB, default = 0)),
SepProb_DB = lag(RemainingProb_DB, default = 1) - RemainingProb_DB) %>%
ungroup()
#Filter out unecessary values
SeparationRates <- SeparationRates %>% select(EntryYear, entry_age, Years, Age, YOS, RemainingProb_DB, SepProb_DB, SepRate_DB)
##############################################################################################################################
#Create a long-form table of Age and YOS and merge with salary data
SalaryData <- expand_grid(EntryYear, Age, YOS) %>%
mutate(entry_age = Age - YOS,
Years = EntryYear + YOS) %>%
filter(entry_age %in% SalaryEntry$entry_age) %>%
arrange(EntryYear, entry_age, YOS)
SalaryData <- left_join(SalaryData, SalaryEntry, by = c("entry_age"))
SalaryData <- left_join(SalaryData, SalaryGrowthYOS, by = c("YOS"))
SalaryData <- SalaryData %>%
group_by(EntryYear, entry_age) %>%
mutate(Salary = start_sal*cumprod(1+lag(salary_increase_yos,default = 0))*(1 + payroll_growth)^(Years - YOS - YearStart),
#Salary = start_sal*salary_increase_compound*(1 + payroll_growth)^(Years - YOS - YearStart),
FinalAvgSalary_3YR = rollmean(lag(Salary), k = 3, fill = NA, align = "right"),
FinalAvgSalary_5YR = rollmean(lag(Salary), k = 5, fill = NA, align = "right"),
#DB_EEContrib = (DB_EE_cont + DC_DB_EE_cont)*Salary,
DB_EEContrib = DB_EE_cont*Salary,
DBEEBalance = cumFV(Interest, DB_EEContrib),
DC_EEBalance = DC_EE_cont*Salary,
#DC_ERBalance = 0.2*DC_ER_cont*Salary,
#CBEEContAmount = CB_EE_paycredit * Salary,
#CBERContAmount = CB_ER_paycredit * Salary,
#CBEEBalance = cumFV(ICR, CBEEContAmount),
#CBERBalance = cumFV(ICR, CBERContAmount),
#CBBalance = CBEEBalance + ifelse(YOS >= CB_vesting, CBERBalance, 0),
CumulativeWage = cumFV(ARR, Salary)) %>%
ungroup()
#Survival Probability and Annuity Factor for active members
AnnFactorData <- MortalityTable %>%
group_by(EntryYear, entry_age, YOS) %>%
mutate(surv = cumprod(1 - lag(mort, default = 0)),
surv_DR = surv/(1 + ARR)^(Age - min(Age)),
#surv_ICR = surv/(1 + ICR)^(Age - min(Age)),
#surv_ACR = surv/(1 + ACR)^(Age - min(Age)),
surv_DR_COLA = surv_DR * (1 + COLA)^(Age - min(Age)),
#surv_ACR_COLA = surv_ACR * (1 + COLA)^(Age - min(Age)),
#AnnuityFactor_ACR = rev(cumsum(rev(surv_ACR_COLA)))/surv_ACR_COLA,
AnnuityFactor_DR = rev(cumsum(rev(surv_DR_COLA)))/surv_DR_COLA) %>%
ungroup()
#Survival Probability and Annuity Factor for retirees
AnnFactorData_retire <- MortalityTable_retire %>%
group_by(base_age) %>%
mutate(surv = cumprod(1 - lag(mort, default = 0)),
surv_DR = surv/(1 + ARR)^(Age - min(Age)),
surv_DR_COLA = surv_DR * (1 + COLA)^(Age - min(Age)),
AnnuityFactor_DR = rev(cumsum(rev(surv_DR_COLA)))/surv_DR_COLA)
##############################################################################################################################
ReducedFactor <- expand_grid(Age, YOS, EntryYear) %>%
left_join(AnnFactorData, by = c("EntryYear" ,"Age", "YOS")) %>%
replace(is.na(.), 0) %>%
filter(Age >= YOS) %>%
group_by(EntryYear, Age, YOS) %>%
mutate(RetType = RetirementType(Age, YOS, EntryYear),
RF = ifelse(RetType == "Early", AnnuityFactor_DR[Age == 60] * surv_DR[Age == 60] / surv_DR / AnnuityFactor_DR, #Benefit for early retirement = actuarially reduced amount of the normal benefit the employee would receive at the earliest age of normal retirement.
ifelse(RetType == "None", 0, 1))) %>%
rename(RetirementAge = Age) %>%
ungroup()
BenefitsTable <- AnnFactorData %>%
rename(RetirementAge = Age) %>%
mutate(term_age = entry_age + YOS) %>%
left_join(SalaryData, by = c("term_age" = "Age", "YOS", "term_year" = "Years", "entry_age", "EntryYear")) %>%
left_join(ReducedFactor %>% select(RetirementAge, YOS, RF, EntryYear), by = c("RetirementAge", "YOS", "EntryYear")) %>%
rename(surv_DR_ret = surv_DR, AF_Ret = AnnuityFactor_DR) %>%
# YOS is in the benefit section because of graded multipliers
mutate(GradedMult = ifelse(EntryYear >= 1990, BenMult1*pmin(YOS,10) + BenMult2*pmax(YOS-10,0), BenMult1*YOS),
BaseBenefit1 = GradedMult*FinalAvgSalary_3YR,
BaseBenefit2 = 25*12*YOS,
#RF = ifelse(RetYear < 2015, RF_Before2015, RF_After2015/YOS),
Benefit = pmax(BaseBenefit1,BaseBenefit2),
AnnFactorAdj_DB = AF_Ret*surv_DR_ret / surv,
#AnnFactorAdj_DB = AnnuityFactor_DR * surv_DR,
DB_Benefit = RF * Benefit,
PV_DB_Benefit = DB_Benefit*AnnFactorAdj_DB)
#CBBalance_final = CBBalance / surv_ICR, #project the cash balance forward to the annuitization day
#CB_Benefit = CBBalance_final / AnnuityFactor_ACR)
# replace(is.na(.), 0)
OptimumBenefit_DB <- BenefitsTable %>%
group_by(EntryYear, entry_age, term_age) %>%
summarise(Max_PV_DB = max(PV_DB_Benefit)) %>%
mutate(Max_PV_DB = ifelse(is.na(Max_PV_DB), 0, Max_PV_DB)) %>%
# filter(entry_age %in% SalaryEntry$entry_age, term_age >= 20) %>%
ungroup() %>%
#join the BenefitsTable to get the "optimal" retirement age
left_join(BenefitsTable %>% filter(PV_DB_Benefit > 0), by = c("EntryYear", "entry_age", "term_age", "Max_PV_DB" = "PV_DB_Benefit")) %>%
select(EntryYear, entry_age, term_age, RetirementAge, Max_PV_DB) %>%
mutate(RetirementAge = ifelse(is.na(RetirementAge), term_age, RetirementAge)) #Assume retire age = term age for non-vested members
##############################################################################################################################
source("utility_functions.R")
FinalData <- SalaryData %>%
left_join(OptimumBenefit_DB, by = c("EntryYear", "entry_age", "Age" = "term_age")) %>%
#left_join(OptimumBenefit_CB, by = c("EntryYear", "entry_age", "Age" = "term_age", "RetirementAge")) %>%
left_join(SeparationRates, by = c("EntryYear", "Age", "YOS", "entry_age", "Years")) %>%
group_by(EntryYear, entry_age) %>%
mutate(#SepType = SeparationType(Age,YOS, Years),
#LumpSumPct = ifelse(EntryYear >= 2022, 0.2, 0.05),
#DBWealth = ifelse(SepType == 'Retirement', pmax(DBEEBalance,Max_PV_DB),
# ifelse(SepType == 'Termination Vested', LumpSumPct*DBEEBalance + (1-LumpSumPct)*Max_PV_DB, DBEEBalance)),
DBWealth = pmax(DBEEBalance,Max_PV_DB),
#DBWealth = pmax(DBEEBalance,Max_PV_DB),
#PenWealth = pmax(DBEEBalance,MaxBenefit), #50% lump sum, 50% optimal retirement
#PenWealth = 0.5*(DBEEBalance + MaxBenefit),
RealPenWealth = DBWealth/(1 + assum_infl)^YOS,
#PVPenWealth = DBWealth/(1 + ARR)^YOS * SepProb,
#PVCumWage = CumulativeWage/(1 + ARR)^YOS * SepProb,
#CBWealth = ifelse(DBWealth == DBEEBalance, CBBalance, PV_CB_Benefit), #mimic DB members' behavior. This is to simplify the workforce projection done later.
Real_DBWealth = DBWealth/(1 + assum_infl)^YOS,
#Real_CBWealth = CBWealth/(1 + assum_infl)^YOS,
PVFB_DB = PVFB(sep_rate_vec = SepRate_DB, interest = ARR, value_vec = DBWealth),
#PVFB_CB = PVFB(sep_rate_vec = SepRate_DB, interest = ARR, value_vec = CBWealth),
PVFS = PVFS(remaining_prob_vec = RemainingProb_DB, interest = ARR, sal_vec = Salary),
normal_cost_DB = PVFB_DB[YOS == 0] / PVFS[YOS == 0],
#normal_cost_CB = PVFB_CB[YOS == 0] / PVFS[YOS == 0],
PVFNC_DB = PVFS * normal_cost_DB) %>%
# replace(is.na(.), 0) %>%
ungroup()
NormalCost <- FinalData %>%
filter(YOS == 0) %>%
select(EntryYear, entry_age, normal_cost_DB)
#Calculate the aggregate normal cost for current year (for testing purposes)
NC_aggregate <- NormalCost %>%
left_join(SalaryEntry, by = c("entry_age")) %>%
left_join(SalaryData %>% select(EntryYear, entry_age, Age, Salary), by = c("EntryYear", "entry_age")) %>%
filter(!is.na(count_start)) %>%
summarise(normal_cost_aggregate_DB = sum(normal_cost_DB * Salary * count_start) / sum(Salary * count_start))