-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmake_stimuli.py
242 lines (215 loc) · 8.04 KB
/
make_stimuli.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
# -*- coding: utf-8 -*-
import glob
import json
import os
import neurokit2 as nk
import numpy as np
import pandas as pd
import pyllusion as ill
# Parameters
width = 800
height = 800
n = 8
data = []
# Delete all existing stimuli
for f in glob.glob("stimuli/*"):
os.remove(f)
# Convenience functions
def save_mosaic(strengths, differences, function, name="Delboeuf", **kwargs):
imgs = []
for strength in [abs(min(strengths, key=abs)), max(strengths)]:
for difference in [abs(min(differences, key=abs)), max(differences)]:
img = function(illusion_strength=strength, difference=difference, **kwargs).to_image(
width=width, height=height
)
img = ill.image_text(
"Difference: "
+ str(np.round(difference, 2))
+ ", Strength: "
+ str(np.round(strength, 2)),
y=0.88,
size=40,
image=img,
)
imgs.append(img)
img = ill.image_mosaic(imgs, ncols=2)
img = ill.image_line(length=2, rotate=0, image=img)
img = ill.image_line(length=2, rotate=90, image=img)
img.save("utils/stimuli_examples/" + name + "_Mosaic.png")
return img
def generate_images(data, strengths, differences, function, name="Delboeuf", **kwargs):
for strength in strengths:
for difference in differences:
img = function(illusion_strength=strength, difference=difference, **kwargs).to_image(
width=width, height=height
)
path = (
name
+ "_str"
+ str(np.round(strength, 2))
+ "_diff"
+ str(np.round(difference, 2))
+ ".png"
)
img.save("stimuli/" + path)
# Compute expected response
if name in ["Delboeuf", "Ebbinghaus", "VerticalHorizontal", "White"]:
if difference > 0:
correct = "arrowleft"
else:
correct = "arrowright"
elif name in ["MullerLyer", "Contrast", "Poggendorff", "Ponzo"]:
if difference > 0:
correct = "arrowup"
else:
correct = "arrowdown"
elif name in ["Zollner", "RodFrame"]:
if difference < 0:
correct = "arrowleft"
else:
correct = "arrowright"
# Save parameters for Delboeuf Illusion
data.append(
{
"Illusion_Type": name,
"Illusion_Strength": strength,
"Difference": difference,
"stimulus": "stimuli/" + path,
"data": {"screen": "Trial", "block": name, "correct_response": correct},
}
)
save_mosaic(strengths, differences, function, name=name, **kwargs)
return data
def sqrtspace(mini=0.1, maxi=1, size=6):
x = np.linspace(np.sqrt(0), np.sqrt(1), int(size / 2) + 1, endpoint=True) ** 2
x = nk.rescale(x[1::], [mini, maxi])
return np.concatenate((-1 * x[::-1], x))
def doublelinspace(mini=0.1, maxi=1, size=6):
x = np.linspace(mini, maxi, int(size / 2), endpoint=True)
return np.concatenate((-1 * x[::-1], x))
# =============================================================================
# STUDY 1
# =============================================================================
# Left-right ======================================================================================
# -------------------------- Delboeuf Illusion --------------------------
ill.Delboeuf(illusion_strength=0.8, difference=1.2).to_image(width=800, height=600).save(
"utils/stimuli_demo/Delboeuf_Demo.png"
)
data = generate_images(
data,
strengths=np.linspace(-2.1, 2.1, n - 1),
differences=doublelinspace(mini=0.08, maxi=0.8, size=n),
function=ill.Delboeuf,
name="Delboeuf",
distance=0.9, # Distance between circles
)
# -------------------------- Ebbinghaus Illusion --------------------------
ill.Ebbinghaus(illusion_strength=0.1, difference=1.5).to_image(width=800, height=600).save(
"utils/stimuli_demo/Ebbinghaus_Demo.png"
)
data = generate_images(
data,
strengths=np.linspace(-2.1, 2.1, n - 1),
differences=doublelinspace(mini=0.08, maxi=0.8, size=n),
function=ill.Ebbinghaus,
name="Ebbinghaus",
distance=0.9, # Distance between circles
)
# -------------------------- Rod Frame Illusion --------------------------
ill.RodFrame(illusion_strength=5, difference=-30).to_image(width=800, height=600).save(
"utils/stimuli_demo/RodFrame_Demo.png"
)
data = generate_images(
data,
strengths=np.linspace(-20, 20, num=n - 1),
differences=doublelinspace(mini=0.05, maxi=8, size=n),
function=ill.RodFrame,
name="RodFrame",
)
# -------------------------- Vertical Horizontal Illusion --------------------------
ill.VerticalHorizontal(illusion_strength=45, difference=1).to_image(width=800, height=600).save(
"utils/stimuli_demo/VerticalHorizontal_Demo.png"
)
data = generate_images(
data,
strengths=np.linspace(-90, 90, num=n - 1),
differences=doublelinspace(mini=0.03, maxi=0.3, size=n),
function=ill.VerticalHorizontal,
name="VerticalHorizontal",
)
# -------------------------- White Illusion --------------------------
ill.White(illusion_strength=5, difference=50).to_image(width=800, height=600).save(
"utils/stimuli_demo/White_Demo.png"
)
data = generate_images(
data,
strengths=np.linspace(-25, 25, num=n - 1),
differences=doublelinspace(mini=5, maxi=20, size=n),
function=ill.White,
name="White",
)
# -------------------------- Zollner Illusion --------------------------
ill.Zollner(illusion_strength=-20, difference=-8).to_image(width=800, height=600).save(
"utils/stimuli_demo/Zollner_Demo.png"
)
data = generate_images(
data,
strengths=np.linspace(-85, 85, num=n - 1),
differences=doublelinspace(mini=0.2, maxi=5, size=n),
function=ill.Zollner,
name="Zollner",
)
# Up-Down ======================================================================================
# -------------------------- MullerLyer Illusion --------------------------
ill.MullerLyer(illusion_strength=10, difference=0.5).to_image(width=800, height=600).save(
"utils/stimuli_demo/MullerLyer_Demo.png"
)
data = generate_images(
data,
strengths=np.linspace(-50, 50, num=n - 1),
differences=doublelinspace(mini=0.05, maxi=0.5, size=n),
function=ill.MullerLyer,
name="MullerLyer",
)
# -------------------------- Ponzo Illusion --------------------------
ill.Ponzo(illusion_strength=5, difference=0.6).to_image(width=800, height=600).save(
"utils/stimuli_demo/Ponzo_Demo.png"
)
data = generate_images(
data,
strengths=np.linspace(-25, 25, num=n - 1),
differences=doublelinspace(mini=0.04, maxi=0.4, size=n),
function=ill.Ponzo,
name="Ponzo",
)
# -------------------------- Contrast Illusion --------------------------
ill.Contrast(illusion_strength=-5, difference=30).to_image(width=800, height=600).save(
"utils/stimuli_demo/Contrast_Demo.png"
)
data = generate_images(
data,
strengths=np.linspace(-36, 36, num=n - 1),
differences=doublelinspace(mini=5, maxi=20, size=n),
function=ill.Contrast,
name="Contrast",
)
# -------------------------- Poggendorff Illusion --------------------------
ill.Poggendorff(illusion_strength=20, difference=0.3).to_image(width=800, height=600).save(
"utils/stimuli_demo/Poggendorff_Demo.png"
)
data = generate_images(
data,
strengths=np.linspace(-66, 66, num=n - 1),
differences=doublelinspace(mini=0.03, maxi=0.3, size=n),
function=ill.Poggendorff,
name="Poggendorff",
)
# -------------------------- Save data --------------------------
# 1. Save data to a javascript file
with open("stimuli/stimuli.js", "w") as fp:
json.dump(data, fp)
# 2. Re-read and add "var test_stimuli ="
with open("stimuli/stimuli.js") as f:
updatedfile = "var stimuli = " + f.read()
with open("stimuli/stimuli.js", "w") as f:
f.write(updatedfile)