Graphs_all_fatures_weights
AMR_gonorrhea_workflow_with_sample_weights.ipynb
Bootstrap_from_TB_paper.ipynb
CIP_Resistant_disagregated.csv
CIP_data_encode_prev_not_dropped.csv
CIP_lr_2005_no_weights.sav
CIP_lr_2006_no_weights.sav
CIP_lr_2007_no_weights.sav
CIP_lr_2008_no_weights.sav
CIP_lr_2009_no_weights.sav
CIP_lr_2010_no_weights.sav
CIP_nn_2005_no_weights.sav
CIP_nn_2006_no_weights.sav
CIP_nn_2007_no_weights.sav
CIP_nn_2008_no_weights.sav
CIP_nn_2009_no_weights.sav
CIP_nn_2010_no_weights.sav
CIP_rf_2005_no_weights.sav
CIP_rf_2006_no_weights.sav
CIP_rf_2007_no_weights.sav
CIP_rf_2008_no_weights.sav
CIP_rf_2009_no_weights.sav
CIP_rf_2010_no_weights.sav
Change_switch_threshold_cipro.ipynb
Check_binary_classification.ipynb
Checking_all_resistances.ipynb
Diagram_feature_importance.ipynb
Difference_in_auROC_RF_2005.csv
Efficacy_model_different_years.ipynb
Functions_AMR_gonorrhea.py
GISP_2000_to_2004_data.csv
GISP_data_initial.code-workspace
Graph_necessary_unecessary_by_year.ipynb
Logistic_regression.ipynb
Multiprocessing_example.ipynb
New_auROC_bootstrap.ipynb
PI_temporal_CV_repeated.ipynb
Paper_graphs_combined.ipynb
Random_forest_classifier.ipynb
Revant_initial_analysis.ipynb
Utility_caclulation.ipynb
Worflow_for_paper_logistic_regression.ipynb
Workflow_AMR_gonorrhea_paper.ipynb
Workflow_for_paper_random_forest.ipynb
Workflow_paper_all_models.ipynb
imporances_all_models_no_weights_and_count_features.csv
imporances_all_models_with_training.csv
imporances_all_models_with_weights_and_count_features.csv
imporances_all_models_with_weights_and_count_features.numbers
You can’t perform that action at this time.