-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathmain.py
executable file
·189 lines (165 loc) · 7.04 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import sys
import os
import os.path as osp
import warnings
import time
import argparse
import torch
import torch.nn as nn
from default_config import (
get_default_config, imagedata_kwargs, videodata_kwargs,
optimizer_kwargs, lr_scheduler_kwargs, engine_run_kwargs
)
import torchreid
from torchreid.utils import (
Logger, set_random_seed, check_isfile, resume_from_checkpoint,
load_pretrained_weights, compute_model_complexity, collect_env_info
)
def build_datamanager(cfg):
if cfg.data.type == 'image':
return torchreid.data.ImageDataManager(**imagedata_kwargs(cfg))
else:
return torchreid.data.VideoDataManager(**videodata_kwargs(cfg))
def build_engine(cfg, datamanager, model, optimizer, scheduler):
if cfg.data.type == 'image':
if cfg.loss.name == 'softmax':
engine = torchreid.engine.ImageSoftmaxEngine(
datamanager,
model,
optimizer,
scheduler=scheduler,
use_gpu=cfg.use_gpu,
label_smooth=cfg.loss.softmax.label_smooth
)
elif cfg.loss.name == 'triplet_dropbatch':
engine = torchreid.engine.ImageTripletDropBatchEngine(
datamanager,
model,
optimizer,
margin=cfg.loss.triplet.margin,
weight_t=cfg.loss.triplet.weight_t,
weight_x=cfg.loss.triplet.weight_x,
weight_db_t=cfg.loss.dropbatch.weight_db_t,
weight_db_x=cfg.loss.dropbatch.weight_db_x,
top_drop_epoch=cfg.loss.dropbatch.top_drop_epoch,
scheduler=scheduler,
use_gpu=cfg.use_gpu,
label_smooth=cfg.loss.softmax.label_smooth
)
elif cfg.loss.name == 'triplet_dropbatch_dropbotfeatures':
engine = torchreid.engine.ImageTripletDropBatchDropBotFeaturesEngine(
datamanager,
model,
optimizer,
margin=cfg.loss.triplet.margin,
weight_t=cfg.loss.triplet.weight_t,
weight_x=cfg.loss.triplet.weight_x,
weight_db_t=cfg.loss.dropbatch.weight_db_t,
weight_db_x=cfg.loss.dropbatch.weight_db_x,
weight_b_db_t=cfg.loss.dropbatch.weight_b_db_t,
weight_b_db_x=cfg.loss.dropbatch.weight_b_db_x,
top_drop_epoch=cfg.loss.dropbatch.top_drop_epoch,
scheduler=scheduler,
use_gpu=cfg.use_gpu,
label_smooth=cfg.loss.softmax.label_smooth
)
elif cfg.loss.name == 'triplet':
engine = torchreid.engine.ImageTripletEngine(
datamanager,
model,
optimizer,
margin=cfg.loss.triplet.margin,
weight_t=cfg.loss.triplet.weight_t,
weight_x=cfg.loss.triplet.weight_x,
scheduler=scheduler,
use_gpu=cfg.use_gpu,
label_smooth=cfg.loss.softmax.label_smooth
)
else:
exit("ERROR")
else:
if cfg.loss.name == 'softmax':
engine = torchreid.engine.VideoSoftmaxEngine(
datamanager,
model,
optimizer,
scheduler=scheduler,
use_gpu=cfg.use_gpu,
label_smooth=cfg.loss.softmax.label_smooth,
pooling_method=cfg.video.pooling_method
)
else:
engine = torchreid.engine.VideoTripletEngine(
datamanager,
model,
optimizer,
margin=cfg.loss.triplet.margin,
weight_t=cfg.loss.triplet.weight_t,
weight_x=cfg.loss.triplet.weight_x,
scheduler=scheduler,
use_gpu=cfg.use_gpu,
label_smooth=cfg.loss.softmax.label_smooth
)
return engine
def reset_config(cfg, args):
if args.root:
cfg.data.root = args.root
if args.sources:
cfg.data.sources = args.sources
if args.targets:
cfg.data.targets = args.targets
if args.transforms:
cfg.data.transforms = args.transforms
def main():
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--config-file', type=str, default='', help='path to config file')
parser.add_argument('-s', '--sources', type=str, nargs='+', help='source datasets (delimited by space)')
parser.add_argument('-t', '--targets', type=str, nargs='+', help='target datasets (delimited by space)')
parser.add_argument('--transforms', type=str, nargs='+', help='data augmentation')
parser.add_argument('--root', type=str, default='', help='path to data root')
parser.add_argument('--gpu-devices', type=str, default='',)
parser.add_argument('opts', default=None, nargs=argparse.REMAINDER, help='Modify config options using the command-line')
args = parser.parse_args()
cfg = get_default_config()
cfg.use_gpu = torch.cuda.is_available()
if args.config_file:
cfg.merge_from_file(args.config_file)
reset_config(cfg, args)
cfg.merge_from_list(args.opts)
cfg.freeze()
set_random_seed(cfg.train.seed)
if cfg.use_gpu and args.gpu_devices:
# if gpu_devices is not specified, all available gpus will be used
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_devices
log_name = 'test.log' if cfg.test.evaluate else 'train.log'
log_name += time.strftime('-%Y-%m-%d-%H-%M-%S')
sys.stdout = Logger(osp.join(cfg.data.save_dir, log_name))
print('Show configuration\n{}\n'.format(cfg))
print('Collecting env info ...')
print('** System info **\n{}\n'.format(collect_env_info()))
if cfg.use_gpu:
torch.backends.cudnn.benchmark = True
datamanager = build_datamanager(cfg)
print('Building model: {}'.format(cfg.model.name))
model = torchreid.models.build_model(
name=cfg.model.name,
num_classes=datamanager.num_train_pids,
loss=cfg.loss.name,
pretrained=cfg.model.pretrained,
use_gpu=cfg.use_gpu
)
num_params, flops = compute_model_complexity(model, (1, 3, cfg.data.height, cfg.data.width))
print('Model complexity: params={:,} flops={:,}'.format(num_params, flops))
if cfg.model.load_weights and check_isfile(cfg.model.load_weights):
load_pretrained_weights(model, cfg.model.load_weights)
if cfg.use_gpu:
model = nn.DataParallel(model).cuda()
optimizer = torchreid.optim.build_optimizer(model, **optimizer_kwargs(cfg))
scheduler = torchreid.optim.build_lr_scheduler(optimizer, **lr_scheduler_kwargs(cfg))
if cfg.model.resume and check_isfile(cfg.model.resume):
args.start_epoch = resume_from_checkpoint(cfg.model.resume, model, optimizer=optimizer)
print('Building {}-engine for {}-reid'.format(cfg.loss.name, cfg.data.type))
engine = build_engine(cfg, datamanager, model, optimizer, scheduler)
engine.run(**engine_run_kwargs(cfg))
if __name__ == '__main__':
main()