-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathplot_data.py
executable file
·265 lines (204 loc) · 10.1 KB
/
plot_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
#!/usr/bin/env python3
"""
Script to plot the data plotted in the maximum likelihood fragment tomography paper.
WARNING: this script is a huge mess.
It was written for the sole purpose of making two figures for a single paper.
Author: Michael A. Perlin (github.com/perlinm)
"""
import glob
import os
from typing import Any, Dict, List, Tuple
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
data_dir = "./data/"
num_qubit_min = 8
num_qubit_max = 20
log10_repetitions_default = 6
num_qubits_default = 18
# labels, colors, and markers for simulation data
labels = ["full", "direct", "MLFT"]
colors = ["tab:blue", "tab:orange", "tab:green"]
markers = ["o", "s", "^"]
data_info = list(zip(labels, colors, markers))
# labels, colors, and markers for analytical estimates
labels = ["full (est.)", "direct (est.)"]
colors = ["k", "tab:red"]
markers = ["+", "2"]
est_info = list(zip(labels, colors, markers))
# misc. plot parameters
params = {"font.size": 9, "text.usetex": True}
plt.rcParams.update(params)
# sum of fragment infidelities
def frag_infidelity(num_qubits: int, frag_str: str, total_repetitions: int) -> float:
frag_num = int(frag_str[1:]) # total number of fragments
# total number of fragment variants
# 4*3 for first/last fragment, plus 4**2 * 3**2 for middle fragments
variants = 24 + 144 * (frag_num - 2)
repetitions_per_variant = total_repetitions // variants
# classical outputs on each fragment
output_nums = np.array([num_qubits // frag_num] * frag_num)
for jj in range(frag_num):
if sum(output_nums) == num_qubits:
break
output_nums[jj] += 1
return sum(2**output_nums) / repetitions_per_variant
##########################################################################################
# extract info from data files
data_files = glob.glob(os.path.join(data_dir, "fidelities_*.txt"))
def info(file: str) -> Dict[str, Any]:
file_tags = file.split("/")[-1][:-4].split("_")
return {
"qubits": file_tags[1],
"frags": file_tags[2],
"log10_reps": file_tags[3],
}
def select_files(**circuit_info: Any) -> List[str]:
return [file for file in data_files if all(tag in file for tag in circuit_info.values())]
def all_values(info_key: str, **selection_args: str) -> List[str]:
return sorted(set([info(file)[info_key] for file in select_files(**selection_args)]))
##########################################################################################
# set up figure template
def get_figure_axes(frag_nums: int = 3) -> Tuple[mpl.figure.Figure, np.ndarray]:
fig_rows = 2
fig_cols = frag_nums
fig_width = 1.5 * fig_cols + 0.8
fig_height = 3.3
return plt.subplots(fig_rows, fig_cols, sharey="row", figsize=(fig_width, fig_height))
figure_avg, axes_avg = get_figure_axes()
figure_std, axes_std = get_figure_axes()
#########################################################################################
# plot fidelity as a function of repetition (shot) number
num_qubits = num_qubits_default
circuit_info = {"qubits": f"Q{num_qubits}"}
circuit_frags = all_values("frags", **circuit_info)
for frag_idx, frag_str in enumerate(circuit_frags):
circuit_info["frags"] = frag_str
def get_file_reps(log10_rep_str: str) -> str:
file_info = dict(circuit_info, **{"log10_reps": log10_rep_str})
files = select_files(**file_info)
assert len(files) == 1
return files[0]
# identify qubit numbers for which we have data
log10_rep_strs = sorted(all_values("log10_reps", **circuit_info))
rep_nums = np.array([10 ** float(ss[1:]) for ss in log10_rep_strs])
# indexed by [qubit_num, circuit_instance, simulation_method]
data = np.array([np.loadtxt(get_file_reps(log10_rep_str)) for log10_rep_str in log10_rep_strs])
# numerical results
for fidelity, (label, color, marker) in zip(data.T, data_info):
infidelity_avg = 1 - np.mean(fidelity, axis=0)
infidelity_std = np.std(fidelity, axis=0)
plot_args = dict(color=color, label=label, fillstyle="none", markersize=6)
axes_avg[0, frag_idx].loglog(rep_nums, infidelity_avg, marker, **plot_args)
axes_std[0, frag_idx].loglog(rep_nums, infidelity_std, marker, **plot_args)
# analytical estimates of infidelity
inf_full = 2**num_qubits / (4 * rep_nums)
inf_cuts = [frag_infidelity(num_qubits, frag_str, rep_num) for rep_num in rep_nums]
for infidelity, (label, color, marker) in zip([inf_full, inf_cuts], est_info):
axes_avg[0, frag_idx].semilogy(
rep_nums, infidelity, marker, color=color, label=label, zorder=0
)
##########################################################################################
# plot fidelity as a function of qubit number
log10_reps = log10_repetitions_default
repetitions = 10**log10_reps
circuit_info = {"log10_reps": f"S{log10_reps:.2f}"}
circuit_frags = all_values("frags", **circuit_info)
for frag_idx, frag_str in enumerate(circuit_frags):
circuit_info["frags"] = frag_str
def get_file_qubits(qubits_tag: str) -> str:
file_info = dict(circuit_info, **{"qubits": qubits_tag})
files = select_files(**file_info)
assert len(files) == 1
return files[0]
# identify qubit numbers for which we have data
qubit_strs = np.array(sorted(all_values("qubits", **circuit_info)))
qubit_nums = np.array([int(qq[1:]) for qq in qubit_strs])
# filter out by qubit minima / maxima
keep = [num_qubit_min <= qubit_num <= num_qubit_max for qubit_num in qubit_nums]
qubit_strs = qubit_strs[keep]
qubit_nums = qubit_nums[keep]
# indexed by [qubit_num, circuit_instance, simulation_method]
data = np.array([np.loadtxt(get_file_qubits(qubit_str)) for qubit_str in qubit_strs])
# numerical results
for fidelity, (label, color, marker) in zip(data.T, data_info):
infidelity_avg = 1 - np.mean(fidelity, axis=0)
infidelity_std = np.std(fidelity, axis=0)
plot_args = dict(color=color, label=label, fillstyle="none", markersize=6)
axes_avg[1, frag_idx].semilogy(qubit_nums, infidelity_avg, marker, **plot_args)
axes_std[1, frag_idx].semilogy(qubit_nums, infidelity_std, marker, **plot_args)
# analytical estimates of infidelity
inf_full = 2**qubit_nums / (4 * repetitions)
inf_cuts = [frag_infidelity(qubit_num, frag_str, repetitions) for qubit_num in qubit_nums]
for infidelity, (label, color, marker) in zip([inf_full, inf_cuts], est_info):
axes_avg[1, frag_idx].semilogy(
qubit_nums, infidelity, marker, color=color, label=label, zorder=0
)
##########################################################################################
# miscellaneous cleanup
# get major/minor tick marks for a logarithmic axis
def get_log_ticks(axis_limits: Tuple[float, float]) -> Tuple[List[float], List[float]]:
base, subs = 10, np.arange(0, 1.1, 0.1)
major_locator = mpl.ticker.LogLocator(base=base)
minor_locator = mpl.ticker.LogLocator(base=base, subs=subs)
min_val, max_val = axis_limits
def filter(values: List[float]) -> List[float]:
return [val for val in values if min_val <= val <= max_val]
major_tick_values = filter(major_locator.tick_values(min_val, max_val))
minor_tick_values = filter(minor_locator.tick_values(min_val, max_val))
return major_tick_values, minor_tick_values
for figure, axes, ylabel in [
(figure_avg, axes_avg, r"$\mathcal{I}$"),
(figure_std, axes_std, r"$\sigma(\mathcal{I})$"),
]:
# add tick marks to top / right of axes
for idx in np.ndindex(axes.shape):
axes[idx].tick_params(top=True)
axes[idx].tick_params(right=True)
# set axis labels and titles
axes[0, 0].set_ylabel(ylabel)
axes[1, 0].set_ylabel(ylabel)
for axis in axes[0, :]:
axis.set_xlabel("$S$")
for axis in axes[1, :]:
axis.set_xlabel("$Q$", labelpad=1)
for frag_idx, frag_str in enumerate(circuit_frags):
axes[0, frag_idx].set_title(f"$F={frag_str[1:]}$", pad=8)
axes[0, -1].yaxis.set_label_position("right")
axes[1, -1].yaxis.set_label_position("right")
axes[0, -1].set_ylabel(f"$Q={num_qubits_default}$", labelpad=10)
axes[1, -1].set_ylabel(f"$S=10^{log10_repetitions_default}$", labelpad=10)
# set horizontal axis ticks and labels
major_tick_values, minor_tick_values = get_log_ticks(axes[0, 0].get_xlim())
for axis in axes[0, :]:
axis.xaxis.set_ticks(major_tick_values)
axis.xaxis.set_ticks(minor_tick_values, minor=True)
xticks = list(range(num_qubit_min, num_qubit_max + 1, 2))
xticklabels = [tick if tick % 4 == 0 else "" for tick in xticks]
for axis in axes[1, :]:
axis.set_xticks(xticks)
axis.set_xticklabels(xticklabels)
# set vertical axis limits and ticks
for axis in axes[:, 0]:
axis.set_ylim(top=1)
major_tick_values, minor_tick_values = get_log_ticks(axis.get_ylim())
axis.yaxis.set_ticks(major_tick_values)
axis.yaxis.set_ticks(minor_tick_values, minor=True)
# label individual panels
bbox = dict(boxstyle="round", facecolor="lightgray", alpha=1)
kwargs = dict(bbox=bbox, fontweight="bold")
axes[0, 0].text(0.1, 0.1, "a", transform=axes[0, 0].transAxes, **kwargs, va="bottom")
axes[0, 1].text(0.1, 0.1, "b", transform=axes[0, 1].transAxes, **kwargs, va="bottom")
axes[0, 2].text(0.1, 0.1, "c", transform=axes[0, 2].transAxes, **kwargs, va="bottom")
axes[1, 0].text(0.1, 0.9, "d", transform=axes[1, 0].transAxes, **kwargs, va="top")
axes[1, 1].text(0.1, 0.9, "e", transform=axes[1, 1].transAxes, **kwargs, va="top")
axes[1, 2].text(0.1, 0.9, "f", transform=axes[1, 2].transAxes, **kwargs, va="top")
# place legend outside of plot and save
handles, labels = axes_avg[0, 0].get_legend_handles_labels()
figure_avg.legend(handles, labels, loc="center left", bbox_to_anchor=(0.96, 0.52))
figure_avg.tight_layout(pad=0.2, h_pad=0.5)
figure_avg.savefig("infidelities_avg.pdf", bbox_inches="tight")
handles, labels = axes_std[0, 0].get_legend_handles_labels()
figure_std.legend(handles, labels, loc="center left", bbox_to_anchor=(0.96, 0.52))
figure_std.tight_layout(pad=0.2, h_pad=0.5)
figure_std.savefig("infidelities_std.pdf", bbox_inches="tight")