-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhierarchical_topics.py
196 lines (166 loc) · 8.14 KB
/
hierarchical_topics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
# Hierarchical topics
import numpy as np
import pandas as pd
import re
from bertopic import BERTopic
import yaml
from datetime import datetime
from sentence_splitter import SentenceSplitter
from transformers import pipeline
from sentence_transformers import SentenceTransformer
import plotly.express as px
import plotly.graph_objects as go
from tqdm.auto import tqdm
from nltk.corpus import stopwords
import matplotlib.pyplot as plt
from topic_window import TopicWindow
from sklearn.decomposition import PCA
from sklearn.manifold import TSNE
from sklearn.metrics.pairwise import cosine_similarity
import plotly.express as px
from scipy.spatial.distance import cosine
from scipy.spatial.distance import pdist, squareform
from sklearn.manifold import MDS
def load_config(config_path: str) -> dict:
"""
Load the configuration file from the specified path.
"""
with open(config_path, 'r') as file:
config = yaml.safe_load(file)
return config
config_path = '/home/fleetr/RedTools/config.yaml'
config = load_config(config_path)
hardware = config.get('hardware', 'GPU')
if hardware == 'GPU':
from cuml.manifold import UMAP
from cuml.cluster import HDBSCAN
print("Using GPU for UMAP and HDBSCAN.")
else:
from umap import UMAP
from hdbscan import HDBSCAN
print("Using CPU for UMAP and HDBSCAN.")
class HierarchicalTopics:
def __init__(self, config_path: str):
self.models = []
self.topic_windows = TopicWindow(config_path)
self.bert_topic = BERTopic()
with open(config_path, 'r') as file:
self.config = yaml.safe_load(file)
def get_hierarchical_topics(self, data, text_column, date_column, timescale):
hierarchical_topics = []
topic_trees = []
figs = []
data_exp = self.topic_windows.expand_dataframe_with_sentences(data, text_column)
frames = self.topic_windows.get_frames(data_exp, date_column, timescale)
for frame in tqdm(frames):
model = self.bert_topic.fit(frame[text_column])
docs: list = frame[text_column].tolist()
h_tops =model.hierarchical_topics(docs)
hierarchical_topics.append(h_tops)
t_trees = model.get_topic_tree(h_tops)
topic_trees.append(t_trees)
fig = model.visualize_hierarchy()
figs.append(fig)
return hierarchical_topics, topic_trees, figs
def get_topic_embeddings(self, data, text_column, date_column, timescale):
topic_embeddings = []
interval_labels = []
data_exp = self.topic_windows.expand_dataframe_with_sentences(data, text_column)
frames = self.topic_windows.get_frames(data_exp, date_column, timescale)
for i, frame in enumerate(tqdm(frames)):
model = self.bert_topic.fit(frame[text_column])
all_topics = sorted(list(model.get_topics().keys()))
freq_df = model.get_topic_freq()
freq_df = freq_df.loc[freq_df.Topic != -1, :]
topics = freq_df.Topic.tolist()
indices = np.array([all_topics.index(topic) for topic in topics])
embeddings = model.topic_embeddings_[indices]
topic_embeddings.append(np.array(embeddings))
interval_labels.extend([f"{timescale.capitalize()} {i+1}"] * len(embeddings))
return topic_embeddings, interval_labels
def combine_topic_vectors(self, topic_embeddings_list):
all_topic_vectors = np.vstack(topic_embeddings_list)
return all_topic_vectors
def reduce_dimensionality(self, topic_vectors, method='pca'):
if method == 'pca':
pca = PCA(n_components=2)
reduced_vectors = pca.fit_transform(topic_vectors)
elif method == 'tsne':
tsne = TSNE(n_components=2, random_state=42)
reduced_vectors = tsne.fit_transform(topic_vectors)
else:
raise ValueError("Invalid method. Use 'pca' or 'tsne'.")
return reduced_vectors
def calculate_similarity(self, topic_vectors):
return cosine_similarity(topic_vectors)
def visualize_topic_clusters(self, reduced_vectors, interval_labels, method='pca'):
df = pd.DataFrame(reduced_vectors, columns=[f'{method.upper()}1', f'{method.upper()}2'])
df['interval'] = interval_labels
if method == 'pca':
plt.figure(figsize=(10, 6))
scatter = plt.scatter(df[f'{method.upper()}1'], df[f'{method.upper()}2'], c=pd.Categorical(df['interval']).codes, cmap='viridis')
plt.colorbar(scatter, ticks=range(len(set(interval_labels))), label='Intervals')
for i, interval in enumerate(df['interval']):
plt.annotate(interval, (df[f'{method.upper()}1'][i], df[f'{method.upper()}2'][i]))
plt.title(f'Topic Evolution Over Time ({method.upper()})')
plt.xlabel(f'{method.upper()} Component 1')
plt.ylabel(f'{method.upper()} Component 2')
plt.show()
elif method == 'tsne':
fig = px.scatter(df, x=f'{method.upper()}1', y=f'{method.upper()}2', color='interval', text='interval',
title=f'Topic Evolution Over Time ({method.upper()})')
fig.update_traces(textposition='top center')
fig.update_layout(xaxis_title=f'{method.upper()} Component 1', yaxis_title=f'{method.upper()} Component 2')
fig.show()
else:
raise ValueError("Invalid method. Use 'pca' or 'tsne'.")
def compute_topic_positions(self, embeddings):
"""Compute y-positions of topics based on their inter-topic distances."""
distances = pdist(embeddings, metric='cosine')
dist_matrix = squareform(distances)
# Use multidimensional scaling to position topics
mds = MDS(n_components=1, dissimilarity='precomputed', random_state=42)
positions = mds.fit_transform(dist_matrix).flatten()
# Normalize positions to [0, 1] range
positions = (positions - positions.min()) / (positions.max() - positions.min())
return positions
def plot_topic_evolution(self, embeddings_list, cutoff_similarity=0.75, all_links=True):
num_intervals = len(embeddings_list)
fig, ax = plt.subplots(figsize=(max(12, num_intervals * 3), 10))
# Compute positions for all time intervals
all_positions = [self.compute_topic_positions(embeddings) for embeddings in embeddings_list]
# Plot topics for each time interval
for i, positions in enumerate(all_positions):
ax.scatter([i] * len(positions), positions, s=50, label=f'Interval {i+1}')
for j, pos in enumerate(positions):
ax.annotate(f'T{i+1}_{j+1}', (i, pos), xytext=(5, 0),
textcoords='offset points', fontsize=8, alpha=0.7)
# Draw links between adjacent intervals
for i in range(num_intervals - 1):
embeddings1 = embeddings_list[i]
embeddings2 = embeddings_list[i+1]
positions1 = all_positions[i]
positions2 = all_positions[i+1]
for j, topic1 in enumerate(embeddings1):
links = []
for k, topic2 in enumerate(embeddings2):
similarity = 1 - np.linalg.norm(topic1 - topic2) # Cosine similarity
if similarity >= cutoff_similarity:
links.append((k, similarity))
if all_links:
for k, sim in links:
ax.plot([i, i+1], [positions1[j], positions2[k]], 'k-',
alpha=0.3, linewidth=sim)
elif links:
k, sim = max(links, key=lambda x: x[1])
ax.plot([i, i+1], [positions1[j], positions2[k]], 'k-',
alpha=0.5, linewidth=sim)
ax.set_xlim(-0.5, num_intervals - 0.5)
ax.set_xticks(range(num_intervals))
ax.set_xticklabels([f'Interval {i+1}' for i in range(num_intervals)])
ax.set_ylim(-0.1, 1.1)
ax.set_yticks([])
ax.set_title('Topic Evolution Across Time Intervals')
ax.legend(bbox_to_anchor=(1.05, 1), loc='upper left')
plt.tight_layout()
plt.show()