forked from GabrielRMx/ff-rknn-sdl3
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathppocr_rec.cc
178 lines (150 loc) · 5.89 KB
/
ppocr_rec.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
#include <stdio.h>
#include <stdlib.h>
#include "ppocr_rec.h"
static void dump_tensor_attr(rknn_tensor_attr* attr)
{
printf(" index=%d, name=%s, n_dims=%d, dims=[%d, %d, %d, %d], n_elems=%d, size=%d, fmt=%s, type=%s, qnt_type=%s, "
"zp=%d, scale=%f\n",
attr->index, attr->name, attr->n_dims, attr->dims[0], attr->dims[1], attr->dims[2], attr->dims[3],
attr->n_elems, attr->size, get_format_string(attr->fmt), get_type_string(attr->type),
get_qnt_type_string(attr->qnt_type), attr->zp, attr->scale);
}
int init_ppocr_rec_model(char* model_data_p, rknn_app_context_t* app_ctx, int &model_len, rknn_context &ctx)
{
int ret;
// Get Model Input Output Number
rknn_input_output_num io_num;
ret = rknn_query(ctx, RKNN_QUERY_IN_OUT_NUM, &io_num, sizeof(io_num));
if (ret != RKNN_SUCC) {
printf("rknn_query fail! ret=%d\n", ret);
return -1;
}
printf("model input num: %d, output num: %d\n", io_num.n_input, io_num.n_output);
// Get Model Input Info
printf("input tensors:\n");
rknn_tensor_attr input_attrs[io_num.n_input];
memset(input_attrs, 0, sizeof(input_attrs));
for (int i = 0; i < io_num.n_input; i++) {
input_attrs[i].index = i;
ret = rknn_query(ctx, RKNN_QUERY_INPUT_ATTR, &(input_attrs[i]), sizeof(rknn_tensor_attr));
if (ret != RKNN_SUCC) {
printf("rknn_query fail! ret=%d\n", ret);
return -1;
}
// dump_tensor_attr(&(input_attrs[i]));
}
// Get Model Output Info
printf("output tensors:\n");
rknn_tensor_attr output_attrs[io_num.n_output];
memset(output_attrs, 0, sizeof(output_attrs));
for (int i = 0; i < io_num.n_output; i++) {
output_attrs[i].index = i;
ret = rknn_query(ctx, RKNN_QUERY_OUTPUT_ATTR, &(output_attrs[i]), sizeof(rknn_tensor_attr));
if (ret != RKNN_SUCC) {
printf("rknn_query fail! ret=%d\n", ret);
return -1;
}
// dump_tensor_attr(&(output_attrs[i]));
}
// Set to context
app_ctx->rknn_ctx = ctx;
app_ctx->io_num = io_num;
app_ctx->input_attrs = (rknn_tensor_attr*)malloc(io_num.n_input * sizeof(rknn_tensor_attr));
memcpy(app_ctx->input_attrs, input_attrs, io_num.n_input * sizeof(rknn_tensor_attr));
app_ctx->output_attrs = (rknn_tensor_attr*)malloc(io_num.n_output * sizeof(rknn_tensor_attr));
memcpy(app_ctx->output_attrs, output_attrs, io_num.n_output * sizeof(rknn_tensor_attr));
if (input_attrs[0].fmt == RKNN_TENSOR_NCHW) {
printf("model is NCHW input fmt\n");
app_ctx->model_channel = input_attrs[0].dims[1];
app_ctx->model_height = input_attrs[0].dims[2];
app_ctx->model_width = input_attrs[0].dims[3];
} else {
printf("model is NHWC input fmt\n");
app_ctx->model_height = input_attrs[0].dims[1];
app_ctx->model_width = input_attrs[0].dims[2];
app_ctx->model_channel = input_attrs[0].dims[3];
}
printf("model input height=%d, width=%d, channel=%d\n",
app_ctx->model_height, app_ctx->model_width, app_ctx->model_channel);
return 0;
}
int release_ppocr_rec_model(rknn_app_context_t* app_ctx)
{
if (app_ctx->rknn_ctx != 0) {
rknn_destroy(app_ctx->rknn_ctx);
app_ctx->rknn_ctx = 0;
}
if (app_ctx->input_attrs != NULL) {
free(app_ctx->input_attrs);
app_ctx->input_attrs = NULL;
}
if (app_ctx->output_attrs != NULL) {
free(app_ctx->output_attrs);
app_ctx->output_attrs = NULL;
}
return 0;
}
int inference_ppocr_rec_model(rknn_app_context_t* app_ctx, void *buf, ppocr_rec_result* out_result)
{
int ret;
rknn_input inputs[1];
rknn_output outputs[1];
int allow_slight_change = 1;
memset(inputs, 0, sizeof(inputs));
memset(outputs, 0, sizeof(outputs));
cv::Mat src_img(app_ctx->model_height, app_ctx->model_width, CV_8UC3, buf);
cv::Mat normalized_img;
src_img.convertTo(normalized_img, CV_32FC3, 1.0 / 127.5, -1.0); // Convert to float and normalize to [-1, 1]
// Set Input Data
inputs[0].index = 0;
inputs[0].type = RKNN_TENSOR_FLOAT32;
inputs[0].fmt = RKNN_TENSOR_NHWC;
inputs[0].size = app_ctx->model_width * app_ctx->model_height * app_ctx->model_channel * sizeof(float);
inputs[0].buf = malloc(inputs[0].size);
if (inputs[0].buf == NULL) {
printf("Error allocating memory for input buffer\n");
return -1;
}
// Copy normalized image data to input buffer
memcpy(inputs[0].buf, normalized_img.data, inputs[0].size);
ret = rknn_inputs_set(app_ctx->rknn_ctx, 1, inputs);
if (ret < 0) {
printf("rknn_input_set fail! ret=%d\n", ret);
return -1;
}
// Run
printf("rknn_run\n");
ret = rknn_run(app_ctx->rknn_ctx, nullptr);
if (ret < 0) {
printf("rknn_run fail! ret=%d\n", ret);
return -1;
}
rknn_input_output_num io_num;
memset(&io_num,0,sizeof(rknn_input_output_num));
rknn_query(app_ctx->rknn_ctx, RKNN_QUERY_IN_OUT_NUM, &io_num, sizeof(io_num));
rknn_perf_run perf_run;
ret = rknn_query(app_ctx->rknn_ctx, RKNN_QUERY_PERF_RUN, &perf_run, sizeof(perf_run));
if (ret != RKNN_SUCC)
{
printf("rknn_query fail! ret=%d\n", ret);
return -1;
}
printf("Inference time = %d ms\n", static_cast<int>(perf_run.run_duration) / 1000);
// Get Output
int out_len_seq = app_ctx->model_width / 8;
outputs[0].want_float = 1;
ret = rknn_outputs_get(app_ctx->rknn_ctx, 1, outputs, NULL);
if (ret < 0) {
printf("rknn_outputs_get fail! ret=%d\n", ret);
goto out;
}
// Post Process
ret = rec_postprocess((float*)outputs[0].buf, MODEL_OUT_CHANNEL, out_len_seq, out_result);
// Remember to release rknn output
rknn_outputs_release(app_ctx->rknn_ctx, io_num.n_input, outputs);
out:
if (inputs[0].buf != NULL) {
free(inputs[0].buf);
}
return ret;
}