-
Notifications
You must be signed in to change notification settings - Fork 5.7k
/
Copy pathflat.py
152 lines (136 loc) · 6.05 KB
/
flat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numbers
from collections.abc import Mapping, Sequence
import numpy as np
import paddle
FIELD_PREFIX = "_paddle_field_"
def _flatten_batch(batch):
"""
For lod_blocking_queue only receive tensor array, flatten batch
data, extract numpy.array data out as a list of numpy.array to
send to lod_blocking_queue, and save the batch data structure
such as fields in other types (str, int, etc) or key-value map
of dictionaries
"""
def _flatten(batch, flat_batch, structure, field_idx):
if isinstance(batch, Sequence):
for field in batch:
if isinstance(
field,
(np.ndarray, paddle.Tensor, paddle.base.core.eager.Tensor),
):
structure.append(f'{FIELD_PREFIX}{field_idx}')
flat_batch.append(field)
field_idx += 1
elif isinstance(field, (str, bytes, numbers.Number)):
structure.append(field)
elif isinstance(field, Sequence):
field_struct, field_idx = _flatten(
field, flat_batch, [], field_idx
)
structure.append(field_struct)
elif isinstance(field, Mapping):
field_struct, field_idx = _flatten(
field, flat_batch, {}, field_idx
)
structure.append(field_struct)
else:
structure.append(field)
elif isinstance(batch, Mapping):
for k, field in batch.items():
if isinstance(
field,
(np.ndarray, paddle.Tensor, paddle.base.core.eager.Tensor),
):
structure[k] = f'{FIELD_PREFIX}{field_idx}'
flat_batch.append(field)
field_idx += 1
elif isinstance(field, (str, bytes, numbers.Number)):
structure[k] = field
elif isinstance(field, Sequence):
field_struct, field_idx = _flatten(
field, flat_batch, [], field_idx
)
structure[k] = field_struct
elif isinstance(field, Mapping):
field_struct, field_idx = _flatten(
field, flat_batch, {}, field_idx
)
structure[k] = field_struct
else:
structure[k] = field
else:
raise TypeError(f"wrong flat data type: {type(batch)}")
return structure, field_idx
# sample only contains single fields
if not isinstance(batch, Sequence):
flat_batch = []
structure, _ = _flatten([batch], flat_batch, [], 0)
return flat_batch, structure[0]
flat_batch = []
structure, _ = _flatten(batch, flat_batch, [], 0)
return flat_batch, structure
def _restore_batch(flat_batch, structure):
"""
After reading list of Tensor data from lod_blocking_queue outputs,
use this function to restore the batch data structure, replace
:attr:`_paddle_field_x` with data from flat_batch
"""
def _restore(structure, field_idx):
if isinstance(structure, Sequence):
for i, field in enumerate(structure):
if isinstance(field, str) and field.startswith(FIELD_PREFIX):
cur_field_idx = int(field.replace(FIELD_PREFIX, ''))
field_idx = max(field_idx, cur_field_idx)
assert (
flat_batch[cur_field_idx] is not None
), "flat_batch[{}] parsed repeatly"
structure[i] = flat_batch[cur_field_idx]
flat_batch[cur_field_idx] = None
elif isinstance(field, (str, bytes, numbers.Number)):
continue
elif isinstance(field, (Sequence, Mapping)):
field_idx = _restore(structure[i], field_idx)
elif isinstance(structure, Mapping):
for k, field in structure.items():
if isinstance(field, str) and field.startswith(FIELD_PREFIX):
cur_field_idx = int(field.replace(FIELD_PREFIX, ''))
field_idx = max(field_idx, cur_field_idx)
assert (
flat_batch[cur_field_idx] is not None
), "flat_batch[{}] parsed repeatly"
structure[k] = flat_batch[cur_field_idx]
flat_batch[cur_field_idx] = None
elif isinstance(field, (str, bytes, numbers.Number)):
continue
elif isinstance(field, (Sequence, Mapping)):
field_idx = _restore(structure[k], field_idx)
else:
raise TypeError(f"wrong flat data type: {type(structure)}")
return field_idx
assert isinstance(flat_batch, Sequence), "flat_batch is not a list or tuple"
# no np.array in dataset, no output tensor from blocking queue
# simply return structure
if len(flat_batch) == 0:
return structure
# sample only contains single fields
if isinstance(structure, (str, bytes)):
assert (
structure == f'{FIELD_PREFIX}{0}'
), f"invalid structure: {structure}"
return flat_batch[0]
field_idx = _restore(structure, 0)
assert field_idx + 1 == len(flat_batch), "Tensor parse incomplete"
return structure