-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
507 lines (460 loc) · 19.4 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
import os
import random
import uuid
import json
import time
import asyncio
import re
from threading import Thread
import gradio as gr
import spaces
import torch
import numpy as np
from PIL import Image
import edge_tts
import cv2
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
TextIteratorStreamer,
Qwen2VLForConditionalGeneration,
AutoProcessor,
Gemma3ForConditionalGeneration,
)
from transformers.image_utils import load_image
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
# Constants
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
MAX_SEED = np.iinfo(np.int32).max
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Helper function to return a progress bar HTML snippet.
def progress_bar_html(label: str) -> str:
return f'''
<div style="display: flex; align-items: center;">
<span style="margin-right: 10px; font-size: 14px;">{label}</span>
<div style="width: 110px; height: 5px; background-color: #F0FFF0; border-radius: 2px; overflow: hidden;">
<div style="width: 100%; height: 100%; background-color: #00FF00 ; animation: loading 1.5s linear infinite;"></div>
</div>
</div>
<style>
@keyframes loading {{
0% {{ transform: translateX(-100%); }}
100% {{ transform: translateX(100%); }}
}}
</style>
'''
# TEXT & TTS MODELS
model_id = "prithivMLmods/FastThink-0.5B-Tiny"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map="auto",
torch_dtype=torch.bfloat16,
)
model.eval()
TTS_VOICES = [
"en-US-JennyNeural", # @tts1
"en-US-GuyNeural", # @tts2
]
# MULTIMODAL (OCR) MODELS
MODEL_ID_VL = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct"
processor = AutoProcessor.from_pretrained(MODEL_ID_VL, trust_remote_code=True)
model_m = Qwen2VLForConditionalGeneration.from_pretrained(
MODEL_ID_VL,
trust_remote_code=True,
torch_dtype=torch.float16
).to("cuda").eval()
async def text_to_speech(text: str, voice: str, output_file="output.mp3"):
communicate = edge_tts.Communicate(text, voice)
await communicate.save(output_file)
return output_file
def clean_chat_history(chat_history):
cleaned = []
for msg in chat_history:
if isinstance(msg, dict) and isinstance(msg.get("content"), str):
cleaned.append(msg)
return cleaned
bad_words = json.loads(os.getenv('BAD_WORDS', "[]"))
bad_words_negative = json.loads(os.getenv('BAD_WORDS_NEGATIVE', "[]"))
default_negative = os.getenv("default_negative", "")
def check_text(prompt, negative=""):
for i in bad_words:
if i in prompt:
return True
for i in bad_words_negative:
if i in negative:
return True
return False
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "0") == "1"
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "2048"))
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
dtype = torch.float16 if device.type == "cuda" else torch.float32
# STABLE DIFFUSION IMAGE GENERATION MODELS
if torch.cuda.is_available():
# Lightning 5 model
pipe = StableDiffusionXLPipeline.from_pretrained(
"SG161222/RealVisXL_V5.0_Lightning",
torch_dtype=dtype,
use_safetensors=True,
add_watermarker=False
).to(device)
pipe.text_encoder = pipe.text_encoder.half()
if ENABLE_CPU_OFFLOAD:
pipe.enable_model_cpu_offload()
else:
pipe.to(device)
print("Loaded RealVisXL_V5.0_Lightning on Device!")
if USE_TORCH_COMPILE:
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
print("Model RealVisXL_V5.0_Lightning Compiled!")
# Lightning 4 model
pipe2 = StableDiffusionXLPipeline.from_pretrained(
"SG161222/RealVisXL_V4.0_Lightning",
torch_dtype=dtype,
use_safetensors=True,
add_watermarker=False,
).to(device)
pipe2.text_encoder = pipe2.text_encoder.half()
if ENABLE_CPU_OFFLOAD:
pipe2.enable_model_cpu_offload()
else:
pipe2.to(device)
print("Loaded RealVisXL_V4.0 on Device!")
if USE_TORCH_COMPILE:
pipe2.unet = torch.compile(pipe2.unet, mode="reduce-overhead", fullgraph=True)
print("Model RealVisXL_V4.0 Compiled!")
# Turbo v3 model
pipe3 = StableDiffusionXLPipeline.from_pretrained(
"SG161222/RealVisXL_V3.0_Turbo",
torch_dtype=dtype,
use_safetensors=True,
add_watermarker=False,
).to(device)
pipe3.text_encoder = pipe3.text_encoder.half()
if ENABLE_CPU_OFFLOAD:
pipe3.enable_model_cpu_offload()
else:
pipe3.to(device)
print("Loaded RealVisXL_V3.0_Turbo on Device!")
if USE_TORCH_COMPILE:
pipe3.unet = torch.compile(pipe3.unet, mode="reduce-overhead", fullgraph=True)
print("Model RealVisXL_V3.0_Turbo Compiled!")
else:
pipe = StableDiffusionXLPipeline.from_pretrained(
"SG161222/RealVisXL_V5.0_Lightning",
torch_dtype=dtype,
use_safetensors=True,
add_watermarker=False
).to(device)
pipe2 = StableDiffusionXLPipeline.from_pretrained(
"SG161222/RealVisXL_V4.0_Lightning",
torch_dtype=dtype,
use_safetensors=True,
add_watermarker=False,
).to(device)
pipe3 = StableDiffusionXLPipeline.from_pretrained(
"SG161222/RealVisXL_V3.0_Turbo",
torch_dtype=dtype,
use_safetensors=True,
add_watermarker=False,
).to(device)
print("Running on CPU; models loaded in float32.")
DEFAULT_MODEL = "Lightning 5"
MODEL_CHOICES = [DEFAULT_MODEL, "Lightning 4", "Turbo v3"]
models = {
"Lightning 5": pipe,
"Lightning 4": pipe2,
"Turbo v3": pipe3
}
def save_image(img: Image.Image) -> str:
unique_name = str(uuid.uuid4()) + ".png"
img.save(unique_name)
return unique_name
# GEMMA3-4B MULTIMODAL MODEL
gemma3_model_id = "google/gemma-3-4b-it"
gemma3_model = Gemma3ForConditionalGeneration.from_pretrained(
gemma3_model_id, device_map="auto"
).eval()
gemma3_processor = AutoProcessor.from_pretrained(gemma3_model_id)
# VIDEO PROCESSING HELPER
def downsample_video(video_path):
vidcap = cv2.VideoCapture(video_path)
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = vidcap.get(cv2.CAP_PROP_FPS)
frames = []
# Sample 10 evenly spaced frames.
frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
for i in frame_indices:
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
success, image = vidcap.read()
if success:
# Convert from BGR to RGB and then to PIL Image.
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
pil_image = Image.fromarray(image)
timestamp = round(i / fps, 2)
frames.append((pil_image, timestamp))
vidcap.release()
return frames
# MAIN GENERATION FUNCTION
@spaces.GPU
def generate(
input_dict: dict,
chat_history: list[dict],
max_new_tokens: int = DEFAULT_MAX_NEW_TOKENS,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2,
):
text = input_dict["text"]
files = input_dict.get("files", [])
lower_text = text.lower().strip()
# IMAGE GENERATION BRANCH (Stable Diffusion models)
if (lower_text.startswith("@lightningv5") or
lower_text.startswith("@lightningv4") or
lower_text.startswith("@turbov3")):
# Determine model choice based on flag.
model_choice = None
if "@lightningv5" in lower_text:
model_choice = "Lightning 5"
elif "@lightningv4" in lower_text:
model_choice = "Lightning 4"
elif "@turbov3" in lower_text:
model_choice = "Turbo v3"
# Remove the model flag from the prompt.
prompt_clean = re.sub(r"@lightningv5", "", text, flags=re.IGNORECASE)
prompt_clean = re.sub(r"@lightningv4", "", prompt_clean, flags=re.IGNORECASE)
prompt_clean = re.sub(r"@turbov3", "", prompt_clean, flags=re.IGNORECASE)
prompt_clean = prompt_clean.strip().strip('"')
# Default parameters for single image generation.
width = 1024
height = 1024
guidance_scale = 6.0
seed_val = 0
randomize_seed_flag = True
seed_val = int(randomize_seed_fn(seed_val, randomize_seed_flag))
generator = torch.Generator(device=device).manual_seed(seed_val)
options = {
"prompt": prompt_clean,
"negative_prompt": default_negative,
"width": width,
"height": height,
"guidance_scale": guidance_scale,
"num_inference_steps": 30,
"generator": generator,
"num_images_per_prompt": 1,
"use_resolution_binning": True,
"output_type": "pil",
}
if device.type == "cuda":
torch.cuda.empty_cache()
selected_pipe = models.get(model_choice, pipe)
yield progress_bar_html("Processing Image Generation")
images = selected_pipe(**options).images
image_path = save_image(images[0])
yield gr.Image(image_path)
return
# GEMMA3-4B TEXT & MULTIMODAL (image) Branch
if lower_text.startswith("@gemma3-4b"):
# If it is video, let the dedicated branch handle it.
if lower_text.startswith("@gemma3-4b-video"):
pass # video branch is handled below.
else:
# Remove the gemma3 flag from the prompt.
prompt_clean = re.sub(r"@gemma3-4b", "", text, flags=re.IGNORECASE).strip().strip('"')
if files:
# If image files are provided, load them.
images = [load_image(f) for f in files]
messages = [{
"role": "user",
"content": [
*[{"type": "image", "image": image} for image in images],
{"type": "text", "text": prompt_clean},
]
}]
else:
messages = [
{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
{"role": "user", "content": [{"type": "text", "text": prompt_clean}]}
]
inputs = gemma3_processor.apply_chat_template(
messages, add_generation_prompt=True, tokenize=True,
return_dict=True, return_tensors="pt"
).to(gemma3_model.device, dtype=torch.bfloat16)
streamer = TextIteratorStreamer(
gemma3_processor.tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True
)
generation_kwargs = {
**inputs,
"streamer": streamer,
"max_new_tokens": max_new_tokens,
"do_sample": True,
"temperature": temperature,
"top_p": top_p,
"top_k": top_k,
"repetition_penalty": repetition_penalty,
}
thread = Thread(target=gemma3_model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
yield progress_bar_html("Processing with Gemma3-4b")
for new_text in streamer:
buffer += new_text
time.sleep(0.01)
yield buffer
return
# NEW: GEMMA3-4B VIDEO Branch
if lower_text.startswith("@gemma3-4b-video"):
# Remove the video flag from the prompt.
prompt_clean = re.sub(r"@gemma3-4b-video", "", text, flags=re.IGNORECASE).strip().strip('"')
if files:
# Assume the first file is a video.
video_path = files[0]
frames = downsample_video(video_path)
messages = [
{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
{"role": "user", "content": [{"type": "text", "text": prompt_clean}]}
]
# Append each frame as an image with a timestamp label.
for frame in frames:
image, timestamp = frame
# Save the frame image to a temporary unique filename.
image_path = f"video_frame_{uuid.uuid4().hex}.png"
image.save(image_path)
messages[1]["content"].append({"type": "text", "text": f"Frame {timestamp}:"})
messages[1]["content"].append({"type": "image", "url": image_path})
else:
messages = [
{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
{"role": "user", "content": [{"type": "text", "text": prompt_clean}]}
]
inputs = gemma3_processor.apply_chat_template(
messages, add_generation_prompt=True, tokenize=True,
return_dict=True, return_tensors="pt"
).to(gemma3_model.device, dtype=torch.bfloat16)
streamer = TextIteratorStreamer(
gemma3_processor.tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True
)
generation_kwargs = {
**inputs,
"streamer": streamer,
"max_new_tokens": max_new_tokens,
"do_sample": True,
"temperature": temperature,
"top_p": top_p,
"top_k": top_k,
"repetition_penalty": repetition_penalty,
}
thread = Thread(target=gemma3_model.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
yield progress_bar_html("Processing with Gemma3-4b Video")
for new_text in streamer:
buffer += new_text
time.sleep(0.01)
yield buffer
return
# Otherwise, handle text/chat (and TTS) generation.
tts_prefix = "@tts"
is_tts = any(text.strip().lower().startswith(f"{tts_prefix}{i}") for i in range(1, 3))
voice_index = next((i for i in range(1, 3) if text.strip().lower().startswith(f"{tts_prefix}{i}")), None)
if is_tts and voice_index:
voice = TTS_VOICES[voice_index - 1]
text = text.replace(f"{tts_prefix}{voice_index}", "").strip()
conversation = [{"role": "user", "content": text}]
else:
voice = None
text = text.replace(tts_prefix, "").strip()
conversation = clean_chat_history(chat_history)
conversation.append({"role": "user", "content": text})
if files:
images = [load_image(image) for image in files] if len(files) > 1 else [load_image(files[0])]
messages = [{
"role": "user",
"content": [
*[{"type": "image", "image": image} for image in images],
{"type": "text", "text": text},
]
}]
prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor(text=[prompt], images=images, return_tensors="pt", padding=True).to("cuda")
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
thread = Thread(target=model_m.generate, kwargs=generation_kwargs)
thread.start()
buffer = ""
yield progress_bar_html("Processing with Qwen2VL Ocr")
for new_text in streamer:
buffer += new_text
buffer = buffer.replace("<|im_end|>", "")
time.sleep(0.01)
yield buffer
else:
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
input_ids = input_ids.to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = {
"input_ids": input_ids,
"streamer": streamer,
"max_new_tokens": max_new_tokens,
"do_sample": True,
"top_p": top_p,
"top_k": top_k,
"temperature": temperature,
"num_beams": 1,
"repetition_penalty": repetition_penalty,
}
t = Thread(target=model.generate, kwargs=generation_kwargs)
t.start()
outputs = []
for new_text in streamer:
outputs.append(new_text)
yield "".join(outputs)
final_response = "".join(outputs)
yield final_response
if is_tts and voice:
output_file = asyncio.run(text_to_speech(final_response, voice))
yield gr.Audio(output_file, autoplay=True)
demo = gr.ChatInterface(
fn=generate,
additional_inputs=[
gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS),
gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6),
gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9),
gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50),
gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2),
],
examples=[
[{"text": "@gemma3-4b Explain the Image", "files": ["examples/3.jpg"]}],
[{"text": "@gemma3-4b-video Explain what is happening in this video ?", "files": ["examples/oreo.mp4"]}],
[{"text": "@gemma3-4b-video Summarize the events in this video", "files": ["examples/sky.mp4"]}],
[{"text": "@gemma3-4b-video What is in the video ?", "files": ["examples/redlight.mp4"]}],
[{"text": "@gemma3-4b Where do the major drought happen?", "files": ["examples/111.png"]}],
[{"text": "@gemma3-4b Transcription of the letter", "files": ["examples/222.png"]}],
['@lightningv5 Chocolate dripping from a donut'],
["Python Program for Array Rotation"],
["@tts1 Who is Nikola Tesla, and why did he die?"],
['@lightningv4 Cat holding a sign that says hello world'],
['@turbov3 Anime illustration of a wiener schnitzel'],
["@tts2 What causes rainbows to form?"],
],
cache_examples=False,
type="messages",
description="# **Imagineo Chat `@gemma3-4b 'prompt..', @gemma3-4b-video, @lightningv5, etc..`**",
fill_height=True,
textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image", "video"], file_count="multiple", placeholder="use the tags @gemma3-4b for multimodal, @gemma3-4b-video for video, @lightningv5, @lightningv4, @turbov3 for image gen !"),
stop_btn="Stop Generation",
multimodal=True,
)
if __name__ == "__main__":
demo.queue(max_size=20).launch(share=True)