forked from rust-windowing/winit
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrunner.rs
443 lines (399 loc) · 15.6 KB
/
runner.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
use std::{
any::Any,
cell::{Cell, RefCell},
collections::{HashSet, VecDeque},
mem, panic, ptr,
rc::Rc,
time::Instant,
};
use winapi::{
shared::{minwindef::DWORD, windef::HWND},
um::winuser,
};
use crate::{
dpi::PhysicalSize,
event::{Event, StartCause, WindowEvent},
event_loop::ControlFlow,
platform_impl::platform::util,
window::WindowId,
};
pub(crate) type EventLoopRunnerShared<T> = Rc<EventLoopRunner<T>>;
pub(crate) struct EventLoopRunner<T: 'static> {
// The event loop's win32 handles
thread_msg_target: HWND,
wait_thread_id: DWORD,
control_flow: Cell<ControlFlow>,
runner_state: Cell<RunnerState>,
last_events_cleared: Cell<Instant>,
event_handler: Cell<Option<Box<dyn FnMut(Event<'_, T>, &mut ControlFlow)>>>,
event_buffer: RefCell<VecDeque<BufferedEvent<T>>>,
owned_windows: Cell<HashSet<HWND>>,
panic_error: Cell<Option<PanicError>>,
}
pub type PanicError = Box<dyn Any + Send + 'static>;
/// See `move_state_to` function for details on how the state loop works.
#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
enum RunnerState {
/// The event loop has just been created, and an `Init` event must be sent.
Uninitialized,
/// The event loop is idling.
Idle,
/// The event loop is handling the OS's events and sending them to the user's callback.
/// `NewEvents` has been sent, and `MainEventsCleared` hasn't.
HandlingMainEvents,
/// The event loop is handling the redraw events and sending them to the user's callback.
/// `MainEventsCleared` has been sent, and `RedrawEventsCleared` hasn't.
HandlingRedrawEvents,
/// The event loop has been destroyed. No other events will be emitted.
Destroyed,
}
enum BufferedEvent<T: 'static> {
Event(Event<'static, T>),
ScaleFactorChanged(WindowId, f64, PhysicalSize<u32>),
}
impl<T> EventLoopRunner<T> {
pub(crate) fn new(thread_msg_target: HWND, wait_thread_id: DWORD) -> EventLoopRunner<T> {
EventLoopRunner {
thread_msg_target,
wait_thread_id,
runner_state: Cell::new(RunnerState::Uninitialized),
control_flow: Cell::new(ControlFlow::Poll),
panic_error: Cell::new(None),
last_events_cleared: Cell::new(Instant::now()),
event_handler: Cell::new(None),
event_buffer: RefCell::new(VecDeque::new()),
owned_windows: Cell::new(HashSet::new()),
}
}
pub(crate) unsafe fn set_event_handler<F>(&self, f: F)
where
F: FnMut(Event<'_, T>, &mut ControlFlow),
{
let old_event_handler = self.event_handler.replace(mem::transmute::<
Option<Box<dyn FnMut(Event<'_, T>, &mut ControlFlow)>>,
Option<Box<dyn FnMut(Event<'_, T>, &mut ControlFlow)>>,
>(Some(Box::new(f))));
assert!(old_event_handler.is_none());
}
pub(crate) fn reset_runner(&self) {
let EventLoopRunner {
thread_msg_target: _,
wait_thread_id: _,
runner_state,
panic_error,
control_flow,
last_events_cleared: _,
event_handler,
event_buffer: _,
owned_windows: _,
} = self;
runner_state.set(RunnerState::Uninitialized);
panic_error.set(None);
control_flow.set(ControlFlow::Poll);
event_handler.set(None);
}
}
/// State retrieval functions.
impl<T> EventLoopRunner<T> {
pub fn thread_msg_target(&self) -> HWND {
self.thread_msg_target
}
pub fn wait_thread_id(&self) -> DWORD {
self.wait_thread_id
}
pub fn redrawing(&self) -> bool {
self.runner_state.get() == RunnerState::HandlingRedrawEvents
}
pub fn take_panic_error(&self) -> Result<(), PanicError> {
match self.panic_error.take() {
Some(err) => Err(err),
None => Ok(()),
}
}
pub fn control_flow(&self) -> ControlFlow {
self.control_flow.get()
}
pub fn handling_events(&self) -> bool {
self.runner_state.get() != RunnerState::Idle
}
pub fn should_buffer(&self) -> bool {
let handler = self.event_handler.take();
let should_buffer = handler.is_none();
self.event_handler.set(handler);
should_buffer
}
}
/// Misc. functions
impl<T> EventLoopRunner<T> {
pub fn catch_unwind<R>(&self, f: impl FnOnce() -> R) -> Option<R> {
let panic_error = self.panic_error.take();
if panic_error.is_none() {
let result = panic::catch_unwind(panic::AssertUnwindSafe(f));
// Check to see if the panic error was set in a re-entrant call to catch_unwind inside
// of `f`. If it was, that error takes priority. If it wasn't, check if our call to
// catch_unwind caught any panics and set panic_error appropriately.
match self.panic_error.take() {
None => match result {
Ok(r) => Some(r),
Err(e) => {
self.panic_error.set(Some(e));
None
}
},
Some(e) => {
self.panic_error.set(Some(e));
None
}
}
} else {
self.panic_error.set(panic_error);
None
}
}
pub fn register_window(&self, window: HWND) {
let mut owned_windows = self.owned_windows.take();
owned_windows.insert(window);
self.owned_windows.set(owned_windows);
}
pub fn remove_window(&self, window: HWND) {
let mut owned_windows = self.owned_windows.take();
owned_windows.remove(&window);
self.owned_windows.set(owned_windows);
}
pub fn owned_windows(&self, mut f: impl FnMut(HWND)) {
let mut owned_windows = self.owned_windows.take();
for hwnd in &owned_windows {
f(*hwnd);
}
let new_owned_windows = self.owned_windows.take();
owned_windows.extend(&new_owned_windows);
self.owned_windows.set(owned_windows);
}
}
/// Event dispatch functions.
impl<T> EventLoopRunner<T> {
pub(crate) unsafe fn poll(&self) {
self.move_state_to(RunnerState::HandlingMainEvents);
}
pub(crate) unsafe fn send_event(&self, event: Event<'_, T>) {
if let Event::RedrawRequested(_) = event {
if self.runner_state.get() != RunnerState::HandlingRedrawEvents {
warn!("RedrawRequested dispatched without explicit MainEventsCleared");
self.move_state_to(RunnerState::HandlingRedrawEvents);
}
self.call_event_handler(event);
} else {
if self.should_buffer() {
// If the runner is already borrowed, we're in the middle of an event loop invocation. Add
// the event to a buffer to be processed later.
self.event_buffer
.borrow_mut()
.push_back(BufferedEvent::from_event(event))
} else {
self.move_state_to(RunnerState::HandlingMainEvents);
self.call_event_handler(event);
self.dispatch_buffered_events();
}
}
}
pub(crate) unsafe fn main_events_cleared(&self) {
self.move_state_to(RunnerState::HandlingRedrawEvents);
}
pub(crate) unsafe fn redraw_events_cleared(&self) {
self.move_state_to(RunnerState::Idle);
}
pub(crate) unsafe fn loop_destroyed(&self) {
self.move_state_to(RunnerState::Destroyed);
}
unsafe fn call_event_handler(&self, event: Event<'_, T>) {
self.catch_unwind(|| {
let mut control_flow = self.control_flow.take();
let mut event_handler = self.event_handler.take()
.expect("either event handler is re-entrant (likely), or no event handler is registered (very unlikely)");
if control_flow != ControlFlow::Exit {
event_handler(event, &mut control_flow);
} else {
event_handler(event, &mut ControlFlow::Exit);
}
assert!(self.event_handler.replace(Some(event_handler)).is_none());
self.control_flow.set(control_flow);
});
}
unsafe fn dispatch_buffered_events(&self) {
loop {
// We do this instead of using a `while let` loop because if we use a `while let`
// loop the reference returned `borrow_mut()` doesn't get dropped until the end
// of the loop's body and attempts to add events to the event buffer while in
// `process_event` will fail.
let buffered_event_opt = self.event_buffer.borrow_mut().pop_front();
match buffered_event_opt {
Some(e) => e.dispatch_event(|e| self.call_event_handler(e)),
None => break,
}
}
}
/// Dispatch control flow events (`NewEvents`, `MainEventsCleared`, `RedrawEventsCleared`, and
/// `LoopDestroyed`) as necessary to bring the internal `RunnerState` to the new runner state.
///
/// The state transitions are defined as follows:
///
/// ```text
/// Uninitialized
/// |
/// V
/// HandlingMainEvents
/// ^ |
/// | V
/// Idle <--- HandlingRedrawEvents
/// |
/// V
/// Destroyed
/// ```
///
/// Attempting to transition back to `Uninitialized` will result in a panic. Attempting to
/// transition *from* `Destroyed` will also reuslt in a panic. Transitioning to the current
/// state is a no-op. Even if the `new_runner_state` isn't the immediate next state in the
/// runner state machine (e.g. `self.runner_state == HandlingMainEvents` and
/// `new_runner_state == Idle`), the intermediate state transitions will still be executed.
unsafe fn move_state_to(&self, new_runner_state: RunnerState) {
use RunnerState::{
Destroyed, HandlingMainEvents, HandlingRedrawEvents, Idle, Uninitialized,
};
match (
self.runner_state.replace(new_runner_state),
new_runner_state,
) {
(Uninitialized, Uninitialized)
| (Idle, Idle)
| (HandlingMainEvents, HandlingMainEvents)
| (HandlingRedrawEvents, HandlingRedrawEvents)
| (Destroyed, Destroyed) => (),
// State transitions that initialize the event loop.
(Uninitialized, HandlingMainEvents) => {
self.call_new_events(true);
}
(Uninitialized, HandlingRedrawEvents) => {
self.call_new_events(true);
self.call_event_handler(Event::MainEventsCleared);
}
(Uninitialized, Idle) => {
self.call_new_events(true);
self.call_event_handler(Event::MainEventsCleared);
self.call_redraw_events_cleared();
}
(Uninitialized, Destroyed) => {
self.call_new_events(true);
self.call_event_handler(Event::MainEventsCleared);
self.call_redraw_events_cleared();
self.call_event_handler(Event::LoopDestroyed);
}
(_, Uninitialized) => panic!("cannot move state to Uninitialized"),
// State transitions that start the event handling process.
(Idle, HandlingMainEvents) => {
self.call_new_events(false);
}
(Idle, HandlingRedrawEvents) => {
self.call_new_events(false);
self.call_event_handler(Event::MainEventsCleared);
}
(Idle, Destroyed) => {
self.call_event_handler(Event::LoopDestroyed);
}
(HandlingMainEvents, HandlingRedrawEvents) => {
self.call_event_handler(Event::MainEventsCleared);
}
(HandlingMainEvents, Idle) => {
warn!("RedrawEventsCleared emitted without explicit MainEventsCleared");
self.call_event_handler(Event::MainEventsCleared);
self.call_redraw_events_cleared();
}
(HandlingMainEvents, Destroyed) => {
self.call_event_handler(Event::MainEventsCleared);
self.call_redraw_events_cleared();
self.call_event_handler(Event::LoopDestroyed);
}
(HandlingRedrawEvents, Idle) => {
self.call_redraw_events_cleared();
}
(HandlingRedrawEvents, HandlingMainEvents) => {
warn!("NewEvents emitted without explicit RedrawEventsCleared");
self.call_redraw_events_cleared();
self.call_new_events(false);
}
(HandlingRedrawEvents, Destroyed) => {
self.call_redraw_events_cleared();
self.call_event_handler(Event::LoopDestroyed);
}
(Destroyed, _) => panic!("cannot move state from Destroyed"),
}
}
unsafe fn call_new_events(&self, init: bool) {
let start_cause = match (init, self.control_flow()) {
(true, _) => StartCause::Init,
(false, ControlFlow::Poll) => StartCause::Poll,
(false, ControlFlow::Exit) | (false, ControlFlow::Wait) => StartCause::WaitCancelled {
requested_resume: None,
start: self.last_events_cleared.get(),
},
(false, ControlFlow::WaitUntil(requested_resume)) => {
if Instant::now() < requested_resume {
StartCause::WaitCancelled {
requested_resume: Some(requested_resume),
start: self.last_events_cleared.get(),
}
} else {
StartCause::ResumeTimeReached {
requested_resume,
start: self.last_events_cleared.get(),
}
}
}
};
self.call_event_handler(Event::NewEvents(start_cause));
self.dispatch_buffered_events();
winuser::RedrawWindow(
self.thread_msg_target,
ptr::null(),
ptr::null_mut(),
winuser::RDW_INTERNALPAINT,
);
}
unsafe fn call_redraw_events_cleared(&self) {
self.call_event_handler(Event::RedrawEventsCleared);
self.last_events_cleared.set(Instant::now());
}
}
impl<T> BufferedEvent<T> {
pub fn from_event(event: Event<'_, T>) -> BufferedEvent<T> {
match event {
Event::WindowEvent {
event:
WindowEvent::ScaleFactorChanged {
scale_factor,
new_inner_size,
},
window_id,
} => BufferedEvent::ScaleFactorChanged(window_id, scale_factor, *new_inner_size),
event => BufferedEvent::Event(event.to_static().unwrap()),
}
}
pub fn dispatch_event(self, dispatch: impl FnOnce(Event<'_, T>)) {
match self {
Self::Event(event) => dispatch(event),
Self::ScaleFactorChanged(window_id, scale_factor, mut new_inner_size) => {
dispatch(Event::WindowEvent {
window_id,
event: WindowEvent::ScaleFactorChanged {
scale_factor,
new_inner_size: &mut new_inner_size,
},
});
util::set_inner_size_physical(
(window_id.0).0,
new_inner_size.width as _,
new_inner_size.height as _,
);
}
}
}
}