-
Notifications
You must be signed in to change notification settings - Fork 751
/
Copy pathNewDispatch.scala
932 lines (870 loc) · 46.6 KB
/
NewDispatch.scala
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
/***************************************************************************************
* Copyright (c) 2020-2021 Institute of Computing Technology, Chinese Academy of Sciences
* Copyright (c) 2020-2021 Peng Cheng Laboratory
*
* XiangShan is licensed under Mulan PSL v2.
* You can use this software according to the terms and conditions of the Mulan PSL v2.
* You may obtain a copy of Mulan PSL v2 at:
* http://license.coscl.org.cn/MulanPSL2
*
* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND,
* EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT,
* MERCHANTABILITY OR FIT FOR A PARTICULAR PURPOSE.
*
* See the Mulan PSL v2 for more details.
***************************************************************************************/
package xiangshan.backend.dispatch
import org.chipsalliance.cde.config.Parameters
import chisel3._
import chisel3.util._
import chisel3.util.experimental.decode._
import freechips.rocketchip.diplomacy.{LazyModule, LazyModuleImp}
import utility._
import xiangshan.ExceptionNO._
import xiangshan._
import xiangshan.backend.rob.{RobDispatchTopDownIO, RobEnqIO}
import xiangshan.backend.Bundles.{DecodedInst, DynInst, ExuVec, IssueQueueIQWakeUpBundle}
import xiangshan.backend.fu.{FuConfig, FuType}
import xiangshan.backend.rename.{BusyTable, VlBusyTable}
import xiangshan.backend.fu.{FuConfig, FuType}
import xiangshan.backend.rename.BusyTableReadIO
import xiangshan.backend.datapath.DataConfig._
import xiangshan.backend.datapath.WbConfig._
import xiangshan.backend.datapath.DataSource
import xiangshan.backend.datapath.WbConfig.VfWB
import xiangshan.backend.fu.FuType.FuTypeOrR
import xiangshan.backend.regcache.{RCTagTableReadPort, RegCacheTagTable}
import xiangshan.mem.MemCoreTopDownIO
import xiangshan.mem.mdp._
import xiangshan.mem.{HasVLSUParameters, _}
class CoreDispatchTopDownIO extends Bundle {
val l2MissMatch = Input(Bool())
val l3MissMatch = Input(Bool())
val fromMem = Flipped(new MemCoreTopDownIO)
}
// TODO delete trigger message from frontend to iq
class NewDispatch(implicit p: Parameters) extends XSModule with HasPerfEvents with HasVLSUParameters {
// std IQ donot need dispatch, only copy sta IQ, but need sta IQ's ready && std IQ's ready
val allIssueParams = backendParams.allIssueParams.filter(_.StdCnt == 0)
val allExuParams = allIssueParams.map(_.exuBlockParams).flatten
val allFuConfigs = allExuParams.map(_.fuConfigs).flatten.toSet.toSeq
val sortedFuConfigs = allFuConfigs.sortBy(_.fuType.id)
println(s"[NewDispatch] ${allExuParams.map(_.name)}")
println(s"[NewDispatch] ${allFuConfigs.map(_.name)}")
println(s"[NewDispatch] ${allFuConfigs.map(_.fuType.id)}")
println(s"[NewDispatch] ${sortedFuConfigs.map(_.name)}")
println(s"[NewDispatch] ${sortedFuConfigs.map(_.fuType.id)}")
val fuConfigsInIssueParams = allIssueParams.map(_.allExuParams.map(_.fuConfigs).flatten.toSet.toSeq)
val fuMapIQIdx = sortedFuConfigs.map( fu => {
val fuInIQIdx = fuConfigsInIssueParams.zipWithIndex.filter { case (f, i) => f.contains(fu) }.map(_._2)
(fu -> fuInIQIdx)
}
)
fuMapIQIdx.map { case (fu, iqidx) =>
println(s"[NewDispatch] ${fu.name} $iqidx")
}
val sameIQIdxFus = fuMapIQIdx.map{ case (fu, iqidx) =>
fuMapIQIdx.filter(_._2 == iqidx).map(_._1) -> iqidx
}.toSet.toSeq
val needMultiIQ = sameIQIdxFus.sortBy(_._1.head.fuType.id).filter(_._2.size > 1)
val needSingleIQ = sameIQIdxFus.sortBy(_._1.head.fuType.id).filter(_._2.size == 1)
needMultiIQ.map { case (fus, iqidx) =>
println(s"[NewDispatch] needMultiIQ: ${fus.map(_.name)} $iqidx")
}
needSingleIQ.map { case (fus, iqidx) =>
println(s"[NewDispatch] needSingleIQ: ${fus.map(_.name)} $iqidx")
}
val fuConfigsInExuParams = allExuParams.map(_.fuConfigs)
val fuMapExuIdx = sortedFuConfigs.map { case fu => {
val fuInExuIdx = fuConfigsInExuParams.zipWithIndex.filter { case (f, i) => f.contains(fu) }.map(_._2)
(fu -> fuInExuIdx)
}
}
val sameExuIdxFus = fuMapExuIdx.map { case (fu, exuidx) =>
fuMapExuIdx.filter(_._2 == exuidx).map(_._1) -> exuidx
}.toSet.toSeq
val needMultiExu = sameExuIdxFus.sortBy(_._1.head.fuType.id).filter(_._2.size > 1).filter{ x =>
x._1.map(y => fuMapIQIdx.filter(_._1 == y).head._2.size > 1).reduce(_ && _)
}
val exuNum = allExuParams.size
val maxIQSize = allIssueParams.map(_.numEntries).max
val IQEnqSum = allIssueParams.map(_.numEnq).sum
val io = IO(new Bundle {
// from rename
val renameIn = Vec(RenameWidth, Flipped(ValidIO(new DecodedInst)))
val fromRename = Vec(RenameWidth, Flipped(DecoupledIO(new DynInst)))
val toRenameAllFire = Output(Bool())
// enq Rob
val enqRob = Flipped(new RobEnqIO)
// IssueQueues
val IQValidNumVec = Vec(exuNum, Input(UInt(maxIQSize.U.getWidth.W)))
val toIssueQueues = Vec(IQEnqSum, DecoupledIO(new DynInst))
// to busyTable
// set preg state to ready (write back regfile)
val wbPregsInt = Vec(backendParams.numPregWb(IntData()), Flipped(ValidIO(UInt(PhyRegIdxWidth.W))))
val wbPregsFp = Vec(backendParams.numPregWb(FpData()), Flipped(ValidIO(UInt(PhyRegIdxWidth.W))))
val wbPregsVec = Vec(backendParams.numPregWb(VecData()), Flipped(ValidIO(UInt(PhyRegIdxWidth.W))))
val wbPregsV0 = Vec(backendParams.numPregWb(V0Data()), Flipped(ValidIO(UInt(PhyRegIdxWidth.W))))
val wbPregsVl = Vec(backendParams.numPregWb(VlData()), Flipped(ValidIO(UInt(PhyRegIdxWidth.W))))
val wakeUpAll = new Bundle {
val wakeUpInt: MixedVec[ValidIO[IssueQueueIQWakeUpBundle]] = Flipped(backendParams.intSchdParams.get.genIQWakeUpOutValidBundle)
val wakeUpFp: MixedVec[ValidIO[IssueQueueIQWakeUpBundle]] = Flipped(backendParams.fpSchdParams.get.genIQWakeUpOutValidBundle)
val wakeUpVec: MixedVec[ValidIO[IssueQueueIQWakeUpBundle]] = Flipped(backendParams.vfSchdParams.get.genIQWakeUpOutValidBundle)
val wakeUpMem: MixedVec[ValidIO[IssueQueueIQWakeUpBundle]] = Flipped(backendParams.memSchdParams.get.genIQWakeUpOutValidBundle)
}
val og0Cancel = Input(ExuVec())
val ldCancel = Vec(backendParams.LdExuCnt, Flipped(new LoadCancelIO))
// to vlbusytable
val vlWriteBackInfo = new Bundle {
val vlFromIntIsZero = Input(Bool())
val vlFromIntIsVlmax = Input(Bool())
val vlFromVfIsZero = Input(Bool())
val vlFromVfIsVlmax = Input(Bool())
}
// from MemBlock
val fromMem = new Bundle {
val lcommit = Input(UInt(log2Up(CommitWidth + 1).W))
val scommit = Input(UInt(log2Ceil(EnsbufferWidth + 1).W)) // connected to `memBlock.io.sqDeq` instead of ROB
val lqDeqPtr = Input(new LqPtr)
val sqDeqPtr = Input(new SqPtr)
// from lsq
val lqCancelCnt = Input(UInt(log2Up(VirtualLoadQueueSize + 1).W))
val sqCancelCnt = Input(UInt(log2Up(StoreQueueSize + 1).W))
}
//toMem
val toMem = new Bundle {
val lsqEnqIO = Flipped(new LsqEnqIO)
}
// redirect
val redirect = Flipped(ValidIO(new Redirect))
// singleStep
val singleStep = Input(Bool())
// lfst
val lfst = new DispatchLFSTIO
// perf only
val robHead = Input(new DynInst)
val stallReason = Flipped(new StallReasonIO(RenameWidth))
val lqCanAccept = Input(Bool())
val sqCanAccept = Input(Bool())
val robHeadNotReady = Input(Bool())
val robFull = Input(Bool())
val debugTopDown = new Bundle {
val fromRob = Flipped(new RobDispatchTopDownIO)
val fromCore = new CoreDispatchTopDownIO
}
})
// Deq for std's IQ is not assigned in Dispatch2Iq, so add one more src for it.
val issueBlockParams = backendParams.allIssueParams
val renameIn = io.renameIn
val fromRename = io.fromRename
io.toRenameAllFire := io.fromRename.map(x => !x.valid || x.fire).reduce(_ && _)
val fromRenameUpdate = Wire(Vec(RenameWidth, Flipped(ValidIO(new DynInst))))
fromRenameUpdate := fromRename
val renameWidth = io.fromRename.size
val issueQueueCount = io.IQValidNumVec
val issueQueueNum = allIssueParams.size
// int fp vec v0 vl
val numRegType = 5
val idxRegTypeInt = allFuConfigs.map(x => {
x.srcData.map(xx => {
xx.zipWithIndex.filter(y => IntRegSrcDataSet.contains(y._1)).map(_._2)
}).flatten
}).flatten.toSet.toSeq.sorted
val idxRegTypeFp = allFuConfigs.map(x => {
x.srcData.map(xx => {
xx.zipWithIndex.filter(y => FpRegSrcDataSet.contains(y._1)).map(_._2)
}).flatten
}).flatten.toSet.toSeq.sorted
val idxRegTypeVec = allFuConfigs.map(x => {
x.srcData.map(xx => {
xx.zipWithIndex.filter(y => VecRegSrcDataSet.contains(y._1)).map(_._2)
}).flatten
}).flatten.toSet.toSeq.sorted
val idxRegTypeV0 = allFuConfigs.map(x => {
x.srcData.map(xx => {
xx.zipWithIndex.filter(y => V0RegSrcDataSet.contains(y._1)).map(_._2)
}).flatten
}).flatten.toSet.toSeq.sorted
val idxRegTypeVl = allFuConfigs.map(x => {
x.srcData.map(xx => {
xx.zipWithIndex.filter(y => VlRegSrcDataSet.contains(y._1)).map(_._2)
}).flatten
}).flatten.toSet.toSeq.sorted
println(s"[NewDispatch] idxRegTypeInt: $idxRegTypeInt")
println(s"[NewDispatch] idxRegTypeFp: $idxRegTypeFp")
println(s"[NewDispatch] idxRegTypeVec: $idxRegTypeVec")
println(s"[NewDispatch] idxRegTypeV0: $idxRegTypeV0")
println(s"[NewDispatch] idxRegTypeVl: $idxRegTypeVl")
val numRegSrc: Int = issueBlockParams.map(_.exuBlockParams.map(
x => if (x.hasStdFu) x.numRegSrc + 1 else x.numRegSrc
).max).max
val numRegSrcInt: Int = issueBlockParams.map(_.exuBlockParams.map(
x => if (x.hasStdFu) x.numIntSrc + 1 else x.numIntSrc
).max).max
val numRegSrcFp: Int = issueBlockParams.map(_.exuBlockParams.map(
x => if (x.hasStdFu) x.numFpSrc + 1 else x.numFpSrc
).max).max
val numRegSrcVf: Int = issueBlockParams.map(_.exuBlockParams.map(
x => x.numVecSrc
).max).max
val numRegSrcV0: Int = issueBlockParams.map(_.exuBlockParams.map(
x => x.numV0Src
).max).max
val numRegSrcVl: Int = issueBlockParams.map(_.exuBlockParams.map(
x => x.numVlSrc
).max).max
println(s"[Dispatch2Iq] numRegSrc: ${numRegSrc}, numRegSrcInt: ${numRegSrcInt}, numRegSrcFp: ${numRegSrcFp}, " +
s"numRegSrcVf: ${numRegSrcVf}, numRegSrcV0: ${numRegSrcV0}, numRegSrcVl: ${numRegSrcVl}")
// RegCacheTagTable Module
val rcTagTable = Module(new RegCacheTagTable(numRegSrcInt * renameWidth))
// BusyTable Modules
val intBusyTable = Module(new BusyTable(numRegSrcInt * renameWidth, backendParams.numPregWb(IntData()), IntPhyRegs, IntWB()))
val fpBusyTable = Module(new BusyTable(numRegSrcFp * renameWidth, backendParams.numPregWb(FpData()), FpPhyRegs, FpWB()))
val vecBusyTable = Module(new BusyTable(numRegSrcVf * renameWidth, backendParams.numPregWb(VecData()), VfPhyRegs, VfWB()))
val v0BusyTable = Module(new BusyTable(numRegSrcV0 * renameWidth, backendParams.numPregWb(V0Data()), V0PhyRegs, V0WB()))
val vlBusyTable = Module(new VlBusyTable(numRegSrcVl * renameWidth, backendParams.numPregWb(VlData()), VlPhyRegs, VlWB()))
vlBusyTable.io_vl_Wb.vlWriteBackInfo := io.vlWriteBackInfo
val busyTables = Seq(intBusyTable, fpBusyTable, vecBusyTable, v0BusyTable, vlBusyTable)
val wbPregs = Seq(io.wbPregsInt, io.wbPregsFp, io.wbPregsVec, io.wbPregsV0, io.wbPregsVl)
val idxRegType = Seq(idxRegTypeInt, idxRegTypeFp, idxRegTypeVec, idxRegTypeV0, idxRegTypeVl)
val allocPregsValid = Wire(Vec(busyTables.size, Vec(RenameWidth, Bool())))
allocPregsValid(0) := VecInit(fromRename.map(x => x.valid && x.bits.rfWen && !x.bits.eliminatedMove))
allocPregsValid(1) := VecInit(fromRename.map(x => x.valid && x.bits.fpWen))
allocPregsValid(2) := VecInit(fromRename.map(x => x.valid && x.bits.vecWen))
allocPregsValid(3) := VecInit(fromRename.map(x => x.valid && x.bits.v0Wen))
allocPregsValid(4) := VecInit(fromRename.map(x => x.valid && x.bits.vlWen))
val allocPregs = Wire(Vec(busyTables.size, Vec(RenameWidth, ValidIO(UInt(PhyRegIdxWidth.W)))))
allocPregs.zip(allocPregsValid).map(x =>{
x._1.zip(x._2).zipWithIndex.map{case ((sink, source), i) => {
sink.valid := source
sink.bits := fromRename(i).bits.pdest
}}
})
val wakeUp = io.wakeUpAll.wakeUpInt ++ io.wakeUpAll.wakeUpFp ++ io.wakeUpAll.wakeUpVec ++ io.wakeUpAll.wakeUpMem
busyTables.zip(wbPregs).zip(allocPregs).map{ case ((b, w), a) => {
b.io.wakeUpInt := io.wakeUpAll.wakeUpInt
b.io.wakeUpFp := io.wakeUpAll.wakeUpFp
b.io.wakeUpVec := io.wakeUpAll.wakeUpVec
b.io.wakeUpMem := io.wakeUpAll.wakeUpMem
b.io.og0Cancel := io.og0Cancel
b.io.ldCancel := io.ldCancel
b.io.wbPregs := w
b.io.allocPregs := a
}}
rcTagTable.io.allocPregs.zip(allocPregs(0)).map(x => x._1 := x._2)
rcTagTable.io.wakeupFromIQ := io.wakeUpAll.wakeUpInt ++ io.wakeUpAll.wakeUpMem
rcTagTable.io.og0Cancel := io.og0Cancel
rcTagTable.io.ldCancel := io.ldCancel
busyTables.zip(idxRegType).zipWithIndex.map { case ((b, idxseq), i) => {
val readAddr = VecInit(fromRename.map(x => x.bits.psrc.zipWithIndex.filter(xx => idxseq.contains(xx._2)).map(_._1)).flatten)
val readValid = VecInit(fromRename.map(x => x.bits.psrc.zipWithIndex.filter(xx => idxseq.contains(xx._2)).map(y => x.valid && SrcType.isXp(x.bits.srcType(y._2)))).flatten)
b.io.read.map(_.req).zip(readAddr).map(x => x._1 := x._2)
// only int src need srcLoadDependency, src0 src1
if (i == 0) {
val srcLoadDependencyUpdate = fromRenameUpdate.map(x => x.bits.srcLoadDependency.zipWithIndex.filter(x => idxseq.contains(x._2)).map(_._1)).flatten
val srcType = fromRenameUpdate.map(x => x.bits.srcType.zipWithIndex.filter(x => idxseq.contains(x._2)).map(_._1)).flatten
// for std, int src need srcLoadDependency, fp src donot need srcLoadDependency
srcLoadDependencyUpdate.lazyZip(b.io.read.map(_.loadDependency)).lazyZip(srcType).map{ case (sink, source, srctype) =>
sink := Mux(SrcType.isXp(srctype), source, 0.U.asTypeOf(sink))
}
// only int src need rcTag
val rcTagUpdate = fromRenameUpdate.map(x => x.bits.regCacheIdx.zipWithIndex.filter(x => idxseq.contains(x._2)).map(_._1)).flatten
rcTagUpdate.zip(rcTagTable.io.readPorts.map(_.addr)).map(x => x._1 := x._2)
val useRegCacheUpdate = fromRenameUpdate.map(x => x.bits.useRegCache.zipWithIndex.filter(x => idxseq.contains(x._2)).map(_._1)).flatten
useRegCacheUpdate.zip(rcTagTable.io.readPorts.map(_.valid)).map(x => x._1 := x._2)
rcTagTable.io.readPorts.map(_.ren).zip(readValid).map(x => x._1 := x._2)
rcTagTable.io.readPorts.map(_.tag).zip(readAddr).map(x => x._1 := x._2)
}
}}
val allSrcState = Wire(Vec(renameWidth, Vec(numRegSrc, Vec(numRegType, Bool()))))
for (i <- 0 until renameWidth){
for (j <- 0 until numRegSrc){
for (k <- 0 until numRegType){
if (!idxRegType(k).contains(j)) {
allSrcState(i)(j)(k) := false.B
}
else {
val readidx = i * idxRegType(k).size + idxRegType(k).indexOf(j)
val readEn = k match {
case 0 => SrcType.isXp(fromRename(i).bits.srcType(j))
case 1 => SrcType.isFp(fromRename(i).bits.srcType(j))
case 2 => SrcType.isVp(fromRename(i).bits.srcType(j))
case 3 => SrcType.isV0(fromRename(i).bits.srcType(j))
case 4 => true.B
}
allSrcState(i)(j)(k) := readEn && busyTables(k).io.read(readidx).resp || SrcType.isImm(fromRename(i).bits.srcType(j))
}
}
}
}
// eliminate old vd
val ignoreOldVdVec = Wire(Vec(renameWidth, Bool()))
for (i <- 0 until renameWidth){
// numRegSrcVf - 1 is old vd
var j = numRegSrcVf - 1
// 2 is type of vec
var k = 2
val readidx = i * idxRegType(k).size + idxRegType(k).indexOf(j)
val readEn = SrcType.isVp(fromRename(i).bits.srcType(j))
val isDependOldVd = fromRename(i).bits.vpu.isDependOldVd
val isWritePartVd = fromRename(i).bits.vpu.isWritePartVd
val vta = fromRename(i).bits.vpu.vta
val vma = fromRename(i).bits.vpu.vma
val vm = fromRename(i).bits.vpu.vm
val vlIsVlmax = vlBusyTable.io_vl_read.vlReadInfo(i).is_vlmax
val vlIsNonZero = vlBusyTable.io_vl_read.vlReadInfo(i).is_nonzero
val ignoreTail = vlIsVlmax && (vm =/= 0.U || vma) && !isWritePartVd
val ignoreWhole = (vm =/= 0.U || vma) && vta
val ignoreOldVd = vlBusyTable.io.read(i).resp && vlIsNonZero && !isDependOldVd && (ignoreTail || ignoreWhole)
ignoreOldVdVec(i) := readEn && ignoreOldVd
allSrcState(i)(j)(k) := readEn && (busyTables(k).io.read(readidx).resp || ignoreOldVd) || SrcType.isImm(fromRename(i).bits.srcType(j))
}
// Singlestep should only commit one machine instruction after dret, and then hart enter debugMode according to singlestep exception.
val s_holdRobidx :: s_updateRobidx :: Nil = Enum(2)
val singleStepState = RegInit(s_updateRobidx)
val robidxStepNext = WireInit(0.U.asTypeOf(fromRename(0).bits.robIdx))
val robidxStepReg = RegInit(0.U.asTypeOf(fromRename(0).bits.robIdx))
val robidxCanCommitStepping = WireInit(0.U.asTypeOf(fromRename(0).bits.robIdx))
when(!io.singleStep) {
singleStepState := s_updateRobidx
}.elsewhen(io.singleStep && fromRename(0).fire && io.enqRob.req(0).valid) {
singleStepState := s_holdRobidx
robidxStepNext := fromRename(0).bits.robIdx
}
when(singleStepState === s_updateRobidx) {
robidxStepReg := robidxStepNext
robidxCanCommitStepping := robidxStepNext
}.elsewhen(singleStepState === s_holdRobidx) {
robidxStepReg := robidxStepReg
robidxCanCommitStepping := robidxStepReg
}
val minIQSelAll = Wire(Vec(needMultiExu.size, Vec(renameWidth, Vec(issueQueueNum, Bool()))))
needMultiExu.zipWithIndex.map{ case ((fus, exuidx), needMultiExuidx) => {
val suffix = fus.map(_.name).mkString("_")
val iqNum = exuidx.size
val iqidx = allIssueParams.map(_.exuBlockParams.map(_.fuConfigs).flatten.toSet.toSeq).zipWithIndex.filter{x => fus.toSet.subsetOf(x._1.toSet)}.map(_._2)
println(s"[NewDispatch] ${fus.map(_.name)};iqidx:$iqidx;exuIdx:$exuidx")
val compareMatrix = Wire(Vec(iqNum, Vec(iqNum, Bool()))).suggestName(s"compareMatrix_$suffix")
for (i <- 0 until iqNum) {
for (j <- 0 until iqNum) {
if (i == j) compareMatrix(i)(j) := false.B
else if (i < j) compareMatrix(i)(j) := issueQueueCount(exuidx(i)) < issueQueueCount(exuidx(j))
else compareMatrix(i)(j) := !compareMatrix(j)(i)
}
}
val IQSort = Reg(Vec(iqNum, Vec(iqNum, Bool()))).suggestName(s"IQSort_$suffix}")
for (i <- 0 until iqNum){
// i = 0 minimum iq, i = iqNum - 1 -> maximum iq
IQSort(i) := compareMatrix.map(x => PopCount(x) === (iqNum - 1 - i).U)
}
val minIQSel = Wire(Vec(renameWidth, Vec(issueQueueNum, Bool()))).suggestName(s"minIQSel_$suffix")
for (i <- 0 until renameWidth){
val minIQSel_ith = IQSort(i % iqNum)
println(s"minIQSel_${i}th_$suffix = IQSort(${i % iqNum})")
for (j <- 0 until issueQueueNum){
minIQSel(i)(j) := false.B
if (iqidx.contains(j)){
minIQSel(i)(j) := minIQSel_ith(iqidx.indexOf(j))
println(s"minIQSel_${suffix}_${i}_${j} = minIQSel_ith(iqidx.indexOf(${j}))")
}
}
}
minIQSelAll(needMultiExuidx) := minIQSel
if (backendParams.debugEn){
dontTouch(compareMatrix)
dontTouch(IQSort)
dontTouch(minIQSel)
}
}
}
val fuConfigSeq = needMultiExu.map(_._1)
val fuTypeOH = Wire(Vec(renameWidth, Vec(needMultiExu.size, Bool())))
fuTypeOH.zip(renameIn).map{ case(oh, in) => {
oh := fuConfigSeq.map(x => x.map(xx => in.bits.fuType(xx.fuType.id)).reduce(_ || _) && in.valid)
}
}
// not count itself
val popFuTypeOH = Wire(Vec(renameWidth, Vec(needMultiExu.size, UInt((renameWidth-1).U.getWidth.W))))
popFuTypeOH.zipWithIndex.map{ case (pop, idx) => {
if (idx == 0){
pop := 0.U.asTypeOf(pop)
}
else {
pop.zipWithIndex.map{ case (p, i) => {
p := PopCount(fuTypeOH.take(idx).map(x => x(i)))
}
}
}
}}
val uopSelIQ = Reg(Vec(renameWidth, Vec(issueQueueNum, Bool())))
val fuTypeOHSingle = Wire(Vec(renameWidth, Vec(needSingleIQ.size, Bool())))
fuTypeOHSingle.zip(renameIn).map{ case (oh, in) => {
oh := needSingleIQ.map(_._1).map(x => x.map(xx => in.valid && in.bits.fuType(xx.fuType.id)).reduce(_ || _))
}}
val uopSelIQSingle = Wire(Vec(needSingleIQ.size, Vec(issueQueueNum, Bool())))
uopSelIQSingle := VecInit(needSingleIQ.map(_._2).flatten.map(x => VecInit((1.U(issueQueueNum.W) << x)(issueQueueNum-1, 0).asBools)))
uopSelIQ.zipWithIndex.map{ case (u, i) => {
when(io.toRenameAllFire){
u := Mux(renameIn(i).valid,
Mux(fuTypeOH(i).asUInt.orR,
Mux1H(fuTypeOH(i), minIQSelAll)(Mux1H(fuTypeOH(i), popFuTypeOH(i))),
Mux1H(fuTypeOHSingle(i), uopSelIQSingle)),
0.U.asTypeOf(u)
)
}.elsewhen(io.fromRename(i).fire){
u := 0.U.asTypeOf(u)
}
}}
val uopSelIQMatrix = Wire(Vec(renameWidth, Vec(issueQueueNum, UInt(renameWidth.U.getWidth.W))))
uopSelIQMatrix.zipWithIndex.map{ case (u, i) => {
u.zipWithIndex.map{ case (uu, j) => {
uu := PopCount(uopSelIQ.take(i+1).map(x => x.zipWithIndex.filter(_._2 == j).map(_._1)).flatten)
}}
}}
val IQSelUop = Wire(Vec(IQEnqSum, ValidIO(new DynInst)))
val uopBlockByIQ = Wire(Vec(renameWidth, Bool()))
val allowDispatch = Wire(Vec(renameWidth, Bool()))
val thisCanActualOut = Wire(Vec(renameWidth, Bool()))
val lsqCanAccept = Wire(Bool())
for (i <- 0 until RenameWidth){
// update valid logic
fromRenameUpdate(i).valid := fromRename(i).valid && allowDispatch(i) && !uopBlockByIQ(i) && thisCanActualOut(i) &&
lsqCanAccept && !fromRename(i).bits.eliminatedMove && !fromRename(i).bits.hasException && !fromRenameUpdate(i).bits.singleStep
fromRename(i).ready := allowDispatch(i) && !uopBlockByIQ(i) && thisCanActualOut(i) && lsqCanAccept
// update src type if eliminate old vd
fromRenameUpdate(i).bits.srcType(numRegSrcVf - 1) := Mux(ignoreOldVdVec(i), SrcType.no, fromRename(i).bits.srcType(numRegSrcVf - 1))
}
for (i <- 0 until RenameWidth){
// check is drop amocas sta
fromRenameUpdate(i).bits.isDropAmocasSta := fromRename(i).bits.isAMOCAS && fromRename(i).bits.uopIdx(0) === 1.U
// update singleStep
fromRenameUpdate(i).bits.singleStep := io.singleStep && (fromRename(i).bits.robIdx =/= robidxCanCommitStepping)
}
var temp = 0
allIssueParams.zipWithIndex.map{ case(issue, iqidx) => {
for (i <- 0 until issue.numEnq){
val oh = Wire(Vec(renameWidth, Bool())).suggestName(s"oh_IQSelUop_$temp")
oh := uopSelIQMatrix.map(_(iqidx)).map(_ === (i+1).U)
IQSelUop(temp) := PriorityMux(oh, fromRenameUpdate)
// there only assign valid not use PriorityMuxDefalut for better timing
IQSelUop(temp).valid := PriorityMuxDefault(oh.zip(fromRenameUpdate.map(_.valid)), false.B)
val allFuThisIQ = issue.exuBlockParams.map(_.fuConfigs).flatten.toSet.toSeq
val hasStaFu = !allFuThisIQ.filter(_.name == "sta").isEmpty
for (j <- 0 until numRegSrc){
val maskForStd = hasStaFu && (j == 1)
val thisSrcHasInt = allFuThisIQ.map(x => {x.srcData.map(xx => {if (j < xx.size) IntRegSrcDataSet.contains(xx(j)) else false}).reduce(_ || _)}).reduce(_ || _)
val thisSrcHasFp = allFuThisIQ.map(x => {x.srcData.map(xx => {if (j < xx.size) FpRegSrcDataSet.contains(xx(j)) else false}).reduce(_ || _)}).reduce(_ || _)
val thisSrcHasVec = allFuThisIQ.map(x => {x.srcData.map(xx => {if (j < xx.size) VecRegSrcDataSet.contains(xx(j)) else false}).reduce(_ || _)}).reduce(_ || _)
val thisSrcHasV0 = allFuThisIQ.map(x => {x.srcData.map(xx => {if (j < xx.size) V0RegSrcDataSet.contains(xx(j)) else false}).reduce(_ || _)}).reduce(_ || _)
val thisSrcHasVl = allFuThisIQ.map(x => {x.srcData.map(xx => {if (j < xx.size) VlRegSrcDataSet.contains(xx(j)) else false}).reduce(_ || _)}).reduce(_ || _)
val selSrcState = Seq(thisSrcHasInt || maskForStd, thisSrcHasFp || maskForStd, thisSrcHasVec, thisSrcHasV0, thisSrcHasVl)
IQSelUop(temp).bits.srcState(j) := PriorityMux(oh, allSrcState)(j).zip(selSrcState).filter(_._2 == true).map(_._1).foldLeft(false.B)(_ || _).asUInt
}
temp = temp + 1
if (backendParams.debugEn){
dontTouch(oh)
}
}
}}
temp = 0
val uopBlockMatrix = Wire(Vec(renameWidth, Vec(issueQueueNum, Bool())))
val uopBlockMatrixForAssign = allIssueParams.zipWithIndex.map { case (issue, iqidx) => {
val result = uopSelIQMatrix.map(_(iqidx)).map(x => Mux(io.toIssueQueues(temp).ready, x > issue.numEnq.U, x.orR))
temp = temp + issue.numEnq
result
}}.transpose
uopBlockMatrix.zip(uopBlockMatrixForAssign).map(x => x._1 := VecInit(x._2))
uopBlockByIQ := uopBlockMatrix.map(_.reduce(_ || _))
io.toIssueQueues.zip(IQSelUop).map(x => {
x._1.valid := x._2.valid
x._1.bits := x._2.bits
})
if (backendParams.debugEn){
dontTouch(uopSelIQMatrix)
dontTouch(IQSelUop)
dontTouch(fromRenameUpdate)
dontTouch(uopBlockByIQ)
dontTouch(allowDispatch)
dontTouch(thisCanActualOut)
dontTouch(popFuTypeOH)
dontTouch(fuTypeOH)
dontTouch(fuTypeOHSingle)
dontTouch(minIQSelAll)
}
///////////////////////////////////////////////////////////
val lsqEnqCtrl = Module(new LsqEnqCtrl)
// TODO: check lsqEnqCtrl redirect logic
// here is RegNext because dispatch2iq use s2_s4_redirect, newDispatch use s1_s3_redirect
lsqEnqCtrl.io.redirect := RegNext(io.redirect)
lsqEnqCtrl.io.lcommit := io.fromMem.lcommit
lsqEnqCtrl.io.scommit := io.fromMem.scommit
lsqEnqCtrl.io.lqCancelCnt := io.fromMem.lqCancelCnt
lsqEnqCtrl.io.sqCancelCnt := io.fromMem.sqCancelCnt
lsqEnqCtrl.io.enq.iqAccept := io.fromRename.map(x => !x.valid || x.fire)
io.toMem.lsqEnqIO <> lsqEnqCtrl.io.enqLsq
private val enqLsqIO = lsqEnqCtrl.io.enq
private val lqFreeCount = lsqEnqCtrl.io.lqFreeCount
private val sqFreeCount = lsqEnqCtrl.io.sqFreeCount
private val numLoadDeq = LSQLdEnqWidth
private val numStoreAMODeq = LSQStEnqWidth
private val numVLoadDeq = LoadPipelineWidth
private val numDeq = enqLsqIO.req.size
lsqCanAccept := enqLsqIO.canAccept
private val isLoadVec = VecInit(fromRename.map(x => x.valid && FuType.isLoad(x.bits.fuType)))
private val isStoreVec = VecInit(fromRename.map(x => x.valid && FuType.isStore(x.bits.fuType)))
private val isAMOVec = fromRename.map(x => x.valid && FuType.isAMO(x.bits.fuType))
private val isStoreAMOVec = fromRename.map(x => x.valid && (FuType.isStore(x.bits.fuType) || FuType.isAMO(x.bits.fuType)))
private val isVLoadVec = VecInit(fromRename.map(x => x.valid && FuType.isVLoad(x.bits.fuType)))
private val isVStoreVec = VecInit(fromRename.map(x => x.valid && FuType.isVStore(x.bits.fuType)))
private val loadCntVec = VecInit(isLoadVec.indices.map(x => PopCount(isLoadVec.slice(0, x + 1))))
private val storeAMOCntVec = VecInit(isStoreAMOVec.indices.map(x => PopCount(isStoreAMOVec.slice(0, x + 1))))
private val vloadCntVec = VecInit(isVLoadVec.indices.map(x => PopCount(isVLoadVec.slice(0, x + 1))))
private val s0_enqLsq_resp = Wire(enqLsqIO.resp.cloneType)
for (i <- 0 until RenameWidth) {
// update lqIdx sqIdx
fromRenameUpdate(i).bits.lqIdx := s0_enqLsq_resp(i).lqIdx
fromRenameUpdate(i).bits.sqIdx := s0_enqLsq_resp(i).sqIdx
}
val loadBlockVec = VecInit(loadCntVec.map(_ > numLoadDeq.U))
val storeAMOBlockVec = VecInit(storeAMOCntVec.map(_ > numStoreAMODeq.U))
val vloadBlockVec = VecInit(vloadCntVec.map(_ > numVLoadDeq.U))
val lsStructBlockVec = VecInit((loadBlockVec.zip(storeAMOBlockVec)).zip(vloadBlockVec).map(x => x._1._1 || x._1._2 || x._2))
if (backendParams.debugEn) {
dontTouch(loadBlockVec)
dontTouch(storeAMOBlockVec)
dontTouch(lsStructBlockVec)
dontTouch(vloadBlockVec)
dontTouch(isLoadVec)
dontTouch(isVLoadVec)
dontTouch(loadCntVec)
}
private val uop = fromRename.map(_.bits)
private val fuType = uop.map(_.fuType)
private val fuOpType = uop.map(_.fuOpType)
private val vtype = uop.map(_.vpu.vtype)
private val sew = vtype.map(_.vsew)
private val lmul = vtype.map(_.vlmul)
private val eew = uop.map(_.vpu.veew)
private val mop = fuOpType.map(fuOpTypeItem => LSUOpType.getVecLSMop(fuOpTypeItem))
private val nf = fuOpType.zip(uop.map(_.vpu.nf)).map { case (fuOpTypeItem, nfItem) => Mux(LSUOpType.isWhole(fuOpTypeItem), 0.U, nfItem) }
private val emul = fuOpType.zipWithIndex.map { case (fuOpTypeItem, index) =>
Mux(
LSUOpType.isWhole(fuOpTypeItem),
GenUSWholeEmul(nf(index)),
Mux(
LSUOpType.isMasked(fuOpTypeItem),
0.U(mulBits.W),
EewLog2(eew(index)) - sew(index) + lmul(index)
)
)
}
private val isVlsType = fuType.map(fuTypeItem => FuType.isVls(fuTypeItem)).zip(fromRename.map(_.valid)).map(x => x._1 && x._2)
private val isLSType = fuType.map(fuTypeItem => FuType.isLoad(fuTypeItem) || FuType.isStore(fuTypeItem)).zip(fromRename.map(_.valid)).map(x => x._1 && x._2)
private val isSegment = fuType.map(fuTypeItem => FuType.isVsegls(fuTypeItem)).zip(fromRename.map(_.valid)).map(x => x._1 && x._2)
// TODO
private val isUnitStride = fuOpType.map(fuOpTypeItem => LSUOpType.isAllUS(fuOpTypeItem))
private val isVecUnitType = isVlsType.zip(isUnitStride).map { case (isVlsTypeItme, isUnitStrideItem) =>
isVlsTypeItme && isUnitStrideItem
}
private val isfofFixVlUop = uop.map { x => x.vpu.isVleff && x.lastUop }
private val instType = isSegment.zip(mop).map { case (isSegementItem, mopItem) => Cat(isSegementItem, mopItem) }
// There is no way to calculate the 'flow' for 'unit-stride' exactly:
// Whether 'unit-stride' needs to be split can only be known after obtaining the address.
// For scalar instructions, this is not handled here, and different assignments are done later according to the situation.
private val numLsElem = VecInit(uop.map(_.numLsElem))
// The maximum 'numLsElem' number that can be emitted per port is:
// 16 2 2 2 2 2.
// The 'allowDispatch' calculations are done conservatively for timing purposes:
// The Flow of scalar instructions is considered 1,
// The flow of vector 'unit-stride' instructions is considered 2, and the flow of other vector instructions is considered 16.
private val conserveFlows = VecInit(isVlsType.zip(isLSType).zipWithIndex.map { case ((isVlsTyepItem, isLSTypeItem), index) =>
Mux(
isVlsTyepItem,
Mux(isUnitStride(index), VecMemUnitStrideMaxFlowNum.U, 16.U),
Mux(isLSTypeItem, 1.U, 0.U)
)
})
private val conserveFlowsIs16 = VecInit(isVlsType.zipWithIndex.map { case (isVlsTyepItem, index) =>
isVlsTyepItem && !isUnitStride(index)
})
private val conserveFlowsIs2 = VecInit(isVlsType.zipWithIndex.map { case (isVlsTyepItem, index) =>
isVlsTyepItem && isUnitStride(index)
})
private val conserveFlowsIs1 = VecInit(isLSType.zipWithIndex.map { case (isLSTyepItem, index) =>
isLSTyepItem
})
private val flowTotalWidth = (VecMemLSQEnqIteratorNumberSeq.max * RenameWidth).U.getWidth
private val conserveFlowTotalDispatch = Wire(Vec(RenameWidth, UInt(flowTotalWidth.W)))
private val lowCountMaxWidth = (2 * RenameWidth).U.getWidth
conserveFlowTotalDispatch.zipWithIndex.map{ case (flowTotal, idx) =>
val highCount = PopCount(conserveFlowsIs16.take(idx + 1))
val conserveFlowsIs2Or1 = VecInit(conserveFlowsIs2.zip(conserveFlowsIs1).map(x => Cat(x._1, x._2)))
val lowCount = conserveFlowsIs2Or1.take(idx + 1).reduce(_ +& _).asTypeOf(0.U(lowCountMaxWidth.W))
flowTotal := (if (RenameWidth == 6) Cat(highCount, lowCount) else ((highCount << 4).asUInt + lowCount))
}
// renameIn
private val isVlsTypeRename = io.renameIn.map(x => x.valid && FuType.isVls(x.bits.fuType))
private val isLSTypeRename = io.renameIn.map(x => x.valid && (FuType.isLoad(x.bits.fuType)) || FuType.isStore(x.bits.fuType))
private val isUnitStrideRename = io.renameIn.map(x => LSUOpType.isAllUS(x.bits.fuOpType))
private val conserveFlowsIs16Rename = VecInit(isVlsTypeRename.zipWithIndex.map { case (isVlsTyepItem, index) =>
isVlsTyepItem && !isUnitStrideRename(index)
})
private val conserveFlowsIs2Rename = VecInit(isVlsTypeRename.zipWithIndex.map { case (isVlsTyepItem, index) =>
isVlsTyepItem && isUnitStrideRename(index)
})
private val conserveFlowsIs1Rename = VecInit(isLSTypeRename.zipWithIndex.map { case (isLSTyepItem, index) =>
isLSTyepItem
})
private val conserveFlowTotalRename = Wire(Vec(RenameWidth, UInt(flowTotalWidth.W)))
conserveFlowTotalRename.zipWithIndex.map { case (flowTotal, idx) =>
val highCount = PopCount(conserveFlowsIs16Rename.take(idx + 1))
val conserveFlowsIs2Or1 = VecInit(conserveFlowsIs2Rename.zip(conserveFlowsIs1Rename).map(x => Cat(x._1, x._2)))
val lowCount = conserveFlowsIs2Or1.take(idx + 1).reduce(_ +& _).asTypeOf(0.U(lowCountMaxWidth.W))
flowTotal := (if (RenameWidth == 6) Cat(highCount, lowCount) else ((highCount << 4).asUInt + lowCount))
}
private val conserveFlowTotal = Reg(Vec(RenameWidth, UInt(flowTotalWidth.W)))
when(io.toRenameAllFire){
conserveFlowTotal := conserveFlowTotalRename
}.otherwise(
conserveFlowTotal := conserveFlowTotalDispatch
)
// A conservative allocation strategy is adopted here.
// Vector 'unit-stride' instructions and scalar instructions can be issued from all six ports,
// while other vector instructions can only be issued from the first port
// if is segment instruction, need disptch it to Vldst_RS0, so, except port 0, stall other.
// The allocation needs to meet a few conditions:
// 1) The lsq has enough entris.
// 2) The number of flows accumulated does not exceed VecMemDispatchMaxNumber.
// 3) Vector instructions other than 'unit-stride' can only be issued on the first port.
for (index <- allowDispatch.indices) {
val flowTotal = conserveFlowTotal(index)
val allowDispatchPrevious = if (index == 0) true.B else allowDispatch(index - 1)
when(isStoreVec(index) || isVStoreVec(index)) {
allowDispatch(index) := (sqFreeCount > flowTotal) && allowDispatchPrevious
}.elsewhen(isLoadVec(index) || isVLoadVec(index)) {
allowDispatch(index) := (lqFreeCount > flowTotal) && allowDispatchPrevious
}.elsewhen(isAMOVec(index)) {
allowDispatch(index) := allowDispatchPrevious
}.otherwise {
allowDispatch(index) := allowDispatchPrevious
}
}
// enqLsq io
require(enqLsqIO.req.size == enqLsqIO.resp.size)
for (i <- enqLsqIO.req.indices) {
when(!io.fromRename(i).fire) {
enqLsqIO.needAlloc(i) := 0.U
}.elsewhen(isStoreVec(i) || isVStoreVec(i)) {
enqLsqIO.needAlloc(i) := 2.U // store | vstore
}.elsewhen(isLoadVec(i) || isVLoadVec(i)){
enqLsqIO.needAlloc(i) := 1.U // load | vload
}.otherwise {
enqLsqIO.needAlloc(i) := 0.U
}
enqLsqIO.req(i).valid := io.fromRename(i).fire && !isAMOVec(i) && !isSegment(i) && !isfofFixVlUop(i)
enqLsqIO.req(i).bits := io.fromRename(i).bits
// This is to make it easier to calculate in LSQ.
// Both scalar instructions and vector instructions with FLOW equal to 1 have a NUM value of 1.”
// But, the 'numLsElem' that is not a vector is set to 0 when passed to IQ
enqLsqIO.req(i).bits.numLsElem := Mux(isVlsType(i), numLsElem(i), 1.U)
s0_enqLsq_resp(i) := enqLsqIO.resp(i)
}
val isFp = VecInit(fromRename.map(req => FuType.isFArith(req.bits.fuType)))
val isVec = VecInit(fromRename.map(req => FuType.isVArith (req.bits.fuType) ||
FuType.isVsetRvfWvf(req.bits.fuType)))
val isMem = VecInit(fromRename.map(req => FuType.isMem(req.bits.fuType) ||
FuType.isVls (req.bits.fuType)))
val isLs = VecInit(fromRename.map(req => FuType.isLoadStore(req.bits.fuType)))
val isVls = VecInit(fromRename.map(req => FuType.isVls (req.bits.fuType)))
val isStore = VecInit(fromRename.map(req => FuType.isStore(req.bits.fuType)))
val isVStore = VecInit(fromRename.map(req => FuType.isVStore(req.bits.fuType)))
val isAMO = VecInit(fromRename.map(req => FuType.isAMO(req.bits.fuType)))
val isBlockBackward = VecInit(fromRename.map(x => x.valid && x.bits.blockBackward))
val isWaitForward = VecInit(fromRename.map(x => x.valid && x.bits.waitForward))
val updatedUop = Wire(Vec(RenameWidth, new DynInst))
val checkpoint_id = RegInit(0.U(64.W))
checkpoint_id := checkpoint_id + PopCount((0 until RenameWidth).map(i =>
fromRename(i).fire
))
for (i <- 0 until RenameWidth) {
updatedUop(i) := fromRename(i).bits
updatedUop(i).debugInfo.eliminatedMove := fromRename(i).bits.eliminatedMove
// For the LUI instruction: psrc(0) is from register file and should always be zero.
when (fromRename(i).bits.isLUI) {
updatedUop(i).psrc(0) := 0.U
}
//TODO: vec ls mdp
io.lfst.req(i).valid := fromRename(i).fire && updatedUop(i).storeSetHit
io.lfst.req(i).bits.isstore := isStore(i)
io.lfst.req(i).bits.ssid := updatedUop(i).ssid
io.lfst.req(i).bits.robIdx := updatedUop(i).robIdx // speculatively assigned in rename
// override load delay ctrl signal with store set result
if(StoreSetEnable) {
updatedUop(i).loadWaitBit := io.lfst.resp(i).bits.shouldWait
updatedUop(i).waitForRobIdx := io.lfst.resp(i).bits.robIdx
} else {
updatedUop(i).loadWaitBit := isLs(i) && !isStore(i) && fromRename(i).bits.loadWaitBit
}
// // update singleStep, singleStep exception only enable in next machine instruction.
updatedUop(i).singleStep := io.singleStep && (fromRename(i).bits.robIdx =/= robidxCanCommitStepping)
XSDebug(
fromRename(i).fire &&
(TriggerAction.isDmode(updatedUop(i).trigger) || updatedUop(i).exceptionVec(breakPoint)), s"Debug Mode: inst ${i} has frontend trigger exception\n")
XSDebug(fromRename(i).fire && updatedUop(i).singleStep, s"Debug Mode: inst ${i} has single step exception\n")
if (env.EnableDifftest) {
// debug runahead hint
val debug_runahead_checkpoint_id = Wire(checkpoint_id.cloneType)
if(i == 0){
debug_runahead_checkpoint_id := checkpoint_id
} else {
debug_runahead_checkpoint_id := checkpoint_id + PopCount((0 until i).map(i =>
fromRename(i).fire
))
}
}
}
// store set perf count
XSPerfAccumulate("waittable_load_wait", PopCount((0 until RenameWidth).map(i =>
fromRename(i).fire && fromRename(i).bits.loadWaitBit && !isStore(i) && isLs(i)
)))
XSPerfAccumulate("storeset_load_wait", PopCount((0 until RenameWidth).map(i =>
fromRename(i).fire && updatedUop(i).loadWaitBit && !isStore(i) && isLs(i)
)))
XSPerfAccumulate("storeset_load_strict_wait", PopCount((0 until RenameWidth).map(i =>
fromRename(i).fire && updatedUop(i).loadWaitBit && updatedUop(i).loadWaitStrict && !isStore(i) && isLs(i)
)))
XSPerfAccumulate("storeset_store_wait", PopCount((0 until RenameWidth).map(i =>
fromRename(i).fire && updatedUop(i).loadWaitBit && isStore(i)
)))
val allResourceReady = io.enqRob.canAccept
// Instructions should enter dispatch queues in order.
// blockedByWaitForward: this instruction is blocked by itself (based on waitForward)
// nextCanOut: next instructions can out (based on blockBackward)
// notBlockedByPrevious: previous instructions can enqueue
val hasException = VecInit(fromRename.zip(updatedUop).map {
case (fromRename: DecoupledIO[DynInst], uop: DynInst) =>
fromRename.bits.hasException || uop.singleStep
})
private val blockedByWaitForward = Wire(Vec(RenameWidth, Bool()))
blockedByWaitForward(0) := !io.enqRob.isEmpty && isWaitForward(0)
for (i <- 1 until RenameWidth) {
blockedByWaitForward(i) := blockedByWaitForward(i - 1) || (!io.enqRob.isEmpty || Cat(fromRename.take(i).map(_.valid)).orR) && isWaitForward(i)
}
if(backendParams.debugEn){
dontTouch(blockedByWaitForward)
dontTouch(conserveFlows)
}
// Only the uop with block backward flag will block the next uop
val nextCanOut = VecInit((0 until RenameWidth).map(i =>
!isBlockBackward(i)
))
val notBlockedByPrevious = VecInit((0 until RenameWidth).map(i =>
if (i == 0) true.B
else Cat((0 until i).map(j => nextCanOut(j))).andR
))
// for noSpecExec: (robEmpty || !this.noSpecExec) && !previous.noSpecExec
// For blockBackward:
// this instruction can actually dequeue: 3 conditions
// (1) resources are ready
// (2) previous instructions are ready
thisCanActualOut := VecInit((0 until RenameWidth).map(i => !blockedByWaitForward(i) && notBlockedByPrevious(i) && io.enqRob.canAccept))
val thisActualOut = (0 until RenameWidth).map(i => io.enqRob.req(i).valid && io.enqRob.canAccept)
// input for ROB, LSQ
for (i <- 0 until RenameWidth) {
// needAlloc no use, need deleted
io.enqRob.needAlloc(i) := fromRename(i).valid
io.enqRob.req(i).valid := fromRename(i).fire
io.enqRob.req(i).bits := updatedUop(i)
io.enqRob.req(i).bits.hasException := updatedUop(i).hasException || updatedUop(i).singleStep
io.enqRob.req(i).bits.numWB := Mux(updatedUop(i).singleStep, 0.U, updatedUop(i).numWB)
}
val hasValidInstr = VecInit(fromRename.map(_.valid)).asUInt.orR
val hasSpecialInstr = Cat((0 until RenameWidth).map(i => isBlockBackward(i))).orR
private val canAccept = !hasValidInstr || !hasSpecialInstr && io.enqRob.canAccept
val isWaitForwardOrBlockBackward = isWaitForward.asUInt.orR || isBlockBackward.asUInt.orR
val renameFireCnt = PopCount(fromRename.map(_.fire))
val stall_rob = hasValidInstr && !io.enqRob.canAccept
val stall_int_dq = hasValidInstr && io.enqRob.canAccept
val stall_int_dq0 = hasValidInstr && io.enqRob.canAccept
val stall_int_dq1 = hasValidInstr && io.enqRob.canAccept
val stall_fp_dq = hasValidInstr && io.enqRob.canAccept
val stall_ls_dq = hasValidInstr && io.enqRob.canAccept
XSPerfAccumulate("in_valid_count", PopCount(fromRename.map(_.valid)))
XSPerfAccumulate("in_fire_count", PopCount(fromRename.map(_.fire)))
XSPerfAccumulate("in_valid_not_ready_count", PopCount(fromRename.map(x => x.valid && !x.ready)))
XSPerfAccumulate("wait_cycle", !fromRename.head.valid && allResourceReady)
XSPerfAccumulate("stall_cycle_rob", stall_rob)
XSPerfAccumulate("stall_cycle_int_dq0", stall_int_dq0)
XSPerfAccumulate("stall_cycle_int_dq1", stall_int_dq1)
XSPerfAccumulate("stall_cycle_fp_dq", stall_fp_dq)
XSPerfAccumulate("stall_cycle_ls_dq", stall_ls_dq)
val notIssue = !io.debugTopDown.fromRob.robHeadLsIssue
val tlbReplay = io.debugTopDown.fromCore.fromMem.robHeadTlbReplay
val tlbMiss = io.debugTopDown.fromCore.fromMem.robHeadTlbMiss
val vioReplay = io.debugTopDown.fromCore.fromMem.robHeadLoadVio
val mshrReplay = io.debugTopDown.fromCore.fromMem.robHeadLoadMSHR
val l1Miss = io.debugTopDown.fromCore.fromMem.robHeadMissInDCache
val l2Miss = io.debugTopDown.fromCore.l2MissMatch
val l3Miss = io.debugTopDown.fromCore.l3MissMatch
val ldReason = Mux(l3Miss, TopDownCounters.LoadMemStall.id.U,
Mux(l2Miss, TopDownCounters.LoadL3Stall.id.U,
Mux(l1Miss, TopDownCounters.LoadL2Stall.id.U,
Mux(notIssue, TopDownCounters.MemNotReadyStall.id.U,
Mux(tlbMiss, TopDownCounters.LoadTLBStall.id.U,
Mux(tlbReplay, TopDownCounters.LoadTLBStall.id.U,
Mux(mshrReplay, TopDownCounters.LoadMSHRReplayStall.id.U,
Mux(vioReplay, TopDownCounters.LoadVioReplayStall.id.U,
TopDownCounters.LoadL1Stall.id.U))))))))
val decodeReason = RegNextN(io.stallReason.reason, 2)
val renameReason = RegNext(io.stallReason.reason)
val stallReason = Wire(chiselTypeOf(io.stallReason.reason))
val firedVec = fromRename.map(_.fire)
io.stallReason.backReason.valid := !canAccept
io.stallReason.backReason.bits := TopDownCounters.OtherCoreStall.id.U
stallReason.zip(io.stallReason.reason).zip(firedVec).zipWithIndex.map { case (((update, in), fire), idx) =>
val headIsInt = FuType.isInt(io.robHead.getDebugFuType) && io.robHeadNotReady
val headIsFp = FuType.isFArith(io.robHead.getDebugFuType) && io.robHeadNotReady
val headIsDiv = FuType.isDivSqrt(io.robHead.getDebugFuType) && io.robHeadNotReady
val headIsLd = io.robHead.getDebugFuType === FuType.ldu.U && io.robHeadNotReady || !io.lqCanAccept
val headIsSt = io.robHead.getDebugFuType === FuType.stu.U && io.robHeadNotReady || !io.sqCanAccept
val headIsAmo = io.robHead.getDebugFuType === FuType.mou.U && io.robHeadNotReady
val headIsLs = headIsLd || headIsSt
val robLsFull = io.robFull || !io.lqCanAccept || !io.sqCanAccept
import TopDownCounters._
update := MuxCase(OtherCoreStall.id.U, Seq(
// fire
(fire ) -> NoStall.id.U ,
// dispatch not stall / core stall from decode or rename
(in =/= OtherCoreStall.id.U && in =/= NoStall.id.U ) -> in ,
// rob stall
(headIsAmo ) -> AtomicStall.id.U ,
(headIsSt ) -> StoreStall.id.U ,
(headIsLd ) -> ldReason ,
(headIsDiv ) -> DivStall.id.U ,
(headIsInt ) -> IntNotReadyStall.id.U ,
(headIsFp ) -> FPNotReadyStall.id.U ,
(renameReason(idx) =/= NoStall.id.U ) -> renameReason(idx) ,
(decodeReason(idx) =/= NoStall.id.U ) -> decodeReason(idx) ,
))
}
TopDownCounters.values.foreach(ctr => XSPerfAccumulate(ctr.toString(), PopCount(stallReason.map(_ === ctr.id.U))))
val robTrueCommit = io.debugTopDown.fromRob.robTrueCommit
TopDownCounters.values.foreach(ctr => XSPerfRolling("td_"+ctr.toString(), PopCount(stallReason.map(_ === ctr.id.U)),
robTrueCommit, 1000, clock, reset))
XSPerfHistogram("slots_fire", PopCount(thisActualOut), true.B, 0, RenameWidth+1, 1)
// Explaination: when out(0) not fire, PopCount(valid) is not meaningfull
XSPerfHistogram("slots_valid_pure", PopCount(io.enqRob.req.map(_.valid)), thisActualOut(0), 0, RenameWidth+1, 1)
XSPerfHistogram("slots_valid_rough", PopCount(io.enqRob.req.map(_.valid)), true.B, 0, RenameWidth+1, 1)
val perfEvents = Seq(
("dispatch_in", PopCount(fromRename.map(_.valid && fromRename(0).ready)) ),
("dispatch_empty", !hasValidInstr ),
("dispatch_utili", PopCount(fromRename.map(_.valid)) ),
("dispatch_waitinstr", PopCount(fromRename.map(!_.valid && canAccept)) ),
("dispatch_stall_cycle_lsq", false.B ),
("dispatch_stall_cycle_rob", stall_rob ),
("dispatch_stall_cycle_int_dq", stall_int_dq ),
("dispatch_stall_cycle_fp_dq", stall_fp_dq ),
("dispatch_stall_cycle_ls_dq", stall_ls_dq )
)
generatePerfEvent()
}