
Wir entwickeln den

JavaLand Coin

@net0pyr | @hendrikEbbers

 

SwirldsLabs.com

© 2022 Swirlds Labs Inc. All rights reserved

Michael Heinrichs
•Java Champion

•Leader of JUG Freiburg

•Contractor for Swirlds Labs

•Founder of Netopyr GmbH

Java Champions

@netopyr

@netopyr | @hendrikEbbers

 

SwirldsLabs.com

© 2022 Swirlds Labs Inc. All rights reserved

@net0pyr | @hendrikEbbers

 

SwirldsLabs.com

© 2022 Swirlds Labs Inc. All rights reserved

Java Champions

Michael Heinrichs
• I ❤ coding

• I ❤ my family

• I ❤ cooking

• I ❤ travelling

@netopyr

@netopyr | @hendrikEbbers

 

SwirldsLabs.com

© 2022 Swirlds Labs Inc. All rights reserved

@net0pyr | @hendrikEbbers

 

SwirldsLabs.com

© 2022 Swirlds Labs Inc. All rights reserved

Hendrik Ebbers
•Java Champion

•Eclipse Adoptium WG

•Contractor for Swirlds Labs

•Founder of Open Elements

Java Champions

@hendrikEbbers

@netopyr | @hendrikEbbers

 

SwirldsLabs.com

© 2022 Swirlds Labs Inc. All rights reserved

@net0pyr | @hendrikEbbers

 

SwirldsLabs.com

© 2022 Swirlds Labs Inc. All rights reserved

Hendrik Ebbers
• I ❤ Star Wars

• I ❤ dogs

• I ❤ boardgames

• I ❤ open source

Java Champions

@hendrikEbbers

@netopyr | @hendrikEbbers

 

SwirldsLabs.com

© 2022 Swirlds Labs Inc. All rights reserved

@net0pyr | @hendrikEbbers

 

SwirldsLabs.com

© 2022 Swirlds Labs Inc. All rights reserved

What you will learn today
•What is a smart contract

•What is a token

•How to use public ledgers

@net0pyr | @hendrikEbbers

 

SwirldsLabs.com

© 2022 Swirlds Labs Inc. All rights reserved

What you will NOT learn today
•How to trade Bitcoins

•How to get rich with NFTs

1,000,000 €

Forget the coins!

Let’s concentrate on

Technologies

@net0pyr | @hendrikEbbers

 

SwirldsLabs.com

© 2022 Swirlds Labs Inc. All rights reserved

Let’s concentrate on technologies

1st generation 2nd generation 3rd generation

@net0pyr | @hendrikEbbers

 

SwirldsLabs.com

© 2022 Swirlds Labs Inc. All rights reserved

Decentralized
Blockchain

Smart Contracts Carbon negative,
faster & cheaper

Let’s concentrate on technologies

The Hedera

Network

@net0pyr | @hendrikEbbers

 

SwirldsLabs.com

© 2022 Swirlds Labs Inc. All rights reserved

•The Hedera Network is a network that is based on
several nodes

•Nodes running on machines of the Hedera
Foundation council members

The Hedera Network

@net0pyr | @hendrikEbbers

 

SwirldsLabs.com

© 2022 Swirlds Labs Inc. All rights reserved

•The productive network is called MainNet

•Hedera provides TestNet and PreviewNet
networks for development and testing

The Hedera Network

MainNet TestNet PreviewNet

@net0pyr | @hendrikEbbers

 

SwirldsLabs.com

© 2022 Swirlds Labs Inc. All rights reserved

•A local network can be setup by using the open
source local node project that is based on Docker 
http://bit.ly/3JqeMvz

The Hedera Network

MainNet TestNet PreviewNet LocalNode[[

@net0pyr | @hendrikEbbers

 

SwirldsLabs.com

© 2022 Swirlds Labs Inc. All rights reserved

The Hedera Network
•MainNet can handle > 1.000 tps

(transaction per second)

•Over 5.000.000.000 transactions have
been handled in production

• In near future it will be > 10 Billion
transactions

March 17, 2023

Smart

Contracts

@net0pyr | @hendrikEbbers

 

SwirldsLabs.com

© 2022 Swirlds Labs Inc. All rights reserved

Gambling Example

Alice Bob

Deposit 100,- Deposit 100,-
Carol

@net0pyr | @hendrikEbbers

 

SwirldsLabs.com

© 2022 Swirlds Labs Inc. All rights reserved

Gambling Example

Alice Bob

Pay out 180,- Carol

@net0pyr | @hendrikEbbers

 

SwirldsLabs.com

© 2022 Swirlds Labs Inc. All rights reserved

Gambling Example

Alice

Deposit 100,-
deposit(amount)
requestPayOut()

Contract Gambling

@net0pyr | @hendrikEbbers

 

SwirldsLabs.com

© 2022 Swirlds Labs Inc. All rights reserved

Gambling Example

Alice Bob

Deposit 100,- Deposit 100,-

@net0pyr | @hendrikEbbers

 

SwirldsLabs.com

© 2022 Swirlds Labs Inc. All rights reserved

Gambling Example

Alice Bob

Pay out 199,99

@net0pyr | @hendrikEbbers

 

SwirldsLabs.com

© 2022 Swirlds Labs Inc. All rights reserved

Use Cases
•Decentralized Finance (DeFi)

•Peer-to-peer markets

•Decentralized Autonomous Organization (DAO)

•…

Etherum

Virtual
Machine

@net0pyr | @hendrikEbbers

 

SwirldsLabs.com

© 2022 Swirlds Labs Inc. All rights reserved

EVM Code

Bytecode

SOL

Solidity
VY

Vyper

YUL

YUL / YUL+

FE

FE

Compile Deploy
EVM

@net0pyr | @hendrikEbbers

 

SwirldsLabs.com

© 2022 Swirlds Labs Inc. All rights reserved

EVM States

EVM 
Code

Account

StorageMemoryStack

PC

Gas

World State σ

(persistent)

Machine State μ

(volatile)

Virtual ROM

(immutable)

@net0pyr | @hendrikEbbers

 

SwirldsLabs.com

© 2022 Swirlds Labs Inc. All rights reserved

Execution Model
Account

Storage

MemoryStack
PC

Gas
Operations

instructions

EVM Code

Push/pop/… Random 
access

Random 
access

@net0pyr | @hendrikEbbers

 

SwirldsLabs.com

© 2022 Swirlds Labs Inc. All rights reserved

OpCodes
Stack Name Gas Initial Stack Resulting Stack Notes

00 STOP 0 halt execution

01 ADD 3 a, b a + b (u)int256 addition modulo 2**256

02 MUL 5 a, b a * b (u)int256 multiplication modulo 2**256

03 SUB 3 a, b a - b (u)int256 addition modulo 2**256

04 DIV 5 a, b a // b uint256 division

05 SDIV 5 a, b a // b int256 division

06 MOD 5 a, b a % b uint256 modulus

07 SMOD 5 a, b a % b int256 modulus

EVM

Languages

@net0pyr | @hendrikEbbers

 

SwirldsLabs.com

© 2022 Swirlds Labs Inc. All rights reserved

Solidity
pragma solidity >= 0.7.0;

contract Coin {

 address public minter;

 mapping (address => uint) public balances;

 event Sent(address from, address to, uint amount);

 constructor() {

 minter = msg.sender;

 }

 function mint(address receiver, uint amount) public {

 require(msg.sender == minter);

 balances[receiver] += amount;

 }

 function send(address receiver, uint amount) public {

 require(amount <= balances[msg.sender]);

 balances[msg.sender] -= amount;

 balances[receiver] += amount;

 emit Sent(msg.sender, receiver, amount);

 }

}

@net0pyr | @hendrikEbbers

 

SwirldsLabs.com

© 2022 Swirlds Labs Inc. All rights reserved

Building Blocks
pragma solidity >= 0.7.0;

contract Coin {

 address public minter;

 mapping (address => uint) public balances;

 event Sent(address from, address to, uint amount);

 constructor() {

 minter = msg.sender;

 }

 function mint(address receiver, uint amount) public {

 require(msg.sender == minter);

 balances[receiver] += amount;

 }

 function send(address receiver, uint amount) public {

 require(amount <= balances[msg.sender]);

 balances[msg.sender] -= amount;

 balances[receiver] += amount;

 emit Sent(msg.sender, receiver, amount);

 }

}

Version Pragma

@net0pyr | @hendrikEbbers

 

SwirldsLabs.com

© 2022 Swirlds Labs Inc. All rights reserved

Building Blocks
pragma solidity >= 0.7.0;

contract Coin {

 address public minter;

 mapping (address => uint) public balances;

 event Sent(address from, address to, uint amount);

 constructor() {

 minter = msg.sender;

 }

 function mint(address receiver, uint amount) public {

 require(msg.sender == minter);

 balances[receiver] += amount;

 }

 function send(address receiver, uint amount) public {

 require(amount <= balances[msg.sender]);

 balances[msg.sender] -= amount;

 balances[receiver] += amount;

 emit Sent(msg.sender, receiver, amount);

 }

}

Contract

@net0pyr | @hendrikEbbers

 

SwirldsLabs.com

© 2022 Swirlds Labs Inc. All rights reserved

Building Blocks
pragma solidity >= 0.7.0;

contract Coin {

 address public minter;

 mapping (address => uint) public balances;

 event Sent(address from, address to, uint amount);

 constructor() {

 minter = msg.sender;

 }

 function mint(address receiver, uint amount) public {

 require(msg.sender == minter);

 balances[receiver] += amount;

 }

 function send(address receiver, uint amount) public {

 require(amount <= balances[msg.sender]);

 balances[msg.sender] -= amount;

 balances[receiver] += amount;

 emit Sent(msg.sender, receiver, amount);

 }

}

State Variables

@net0pyr | @hendrikEbbers

 

SwirldsLabs.com

© 2022 Swirlds Labs Inc. All rights reserved

Building Blocks
pragma solidity >= 0.7.0;

contract Coin {

 address public minter;

 mapping (address => uint) public balances;

 event Sent(address from, address to, uint amount);

 constructor() {

 minter = msg.sender;

 }

 function mint(address receiver, uint amount) public {

 require(msg.sender == minter);

 balances[receiver] += amount;

 }

 function send(address receiver, uint amount) public {

 require(amount <= balances[msg.sender]);

 balances[msg.sender] -= amount;

 balances[receiver] += amount;

 emit Sent(msg.sender, receiver, amount);

 }

}

Events

@net0pyr | @hendrikEbbers

 

SwirldsLabs.com

© 2022 Swirlds Labs Inc. All rights reserved

Building Blocks
pragma solidity >= 0.7.0;

contract Coin {

 address public minter;

 mapping (address => uint) public balances;

 event Sent(address from, address to, uint amount);

 constructor() {

 minter = msg.sender;

 }

 function mint(address receiver, uint amount) public {

 require(msg.sender == minter);

 balances[receiver] += amount;

 }

 function send(address receiver, uint amount) public {

 require(amount <= balances[msg.sender]);

 balances[msg.sender] -= amount;

 balances[receiver] += amount;

 emit Sent(msg.sender, receiver, amount);

 }

}

Constructor

@net0pyr | @hendrikEbbers

 

SwirldsLabs.com

© 2022 Swirlds Labs Inc. All rights reserved

Building Blocks
pragma solidity >= 0.7.0;

contract Coin {

 address public minter;

 mapping (address => uint) public balances;

 event Sent(address from, address to, uint amount);

 constructor() {

 minter = msg.sender;

 }

 function mint(address receiver, uint amount) public {

 require(msg.sender == minter);

 balances[receiver] += amount;

 }

 function send(address receiver, uint amount) public {

 require(amount <= balances[msg.sender]);

 balances[msg.sender] -= amount;

 balances[receiver] += amount;

 emit Sent(msg.sender, receiver, amount);

 }

}

Functions

@net0pyr | @hendrikEbbers

 

SwirldsLabs.com

© 2022 Swirlds Labs Inc. All rights reserved

Solidity
pragma solidity >= 0.7.0;

contract Coin {

 address public minter;

 mapping (address => uint) public balances;

 event Sent(address from, address to, uint amount);

 constructor() {

 minter = msg.sender;

 }

 function mint(address receiver, uint amount) public {

 require(msg.sender == minter);

 balances[receiver] += amount;

 }

 function send(address receiver, uint amount) public {

 require(amount <= balances[msg.sender]);

 balances[msg.sender] -= amount;

 balances[receiver] += amount;

 emit Sent(msg.sender, receiver, amount);

 }

}

@net0pyr | @hendrikEbbers

 

SwirldsLabs.com

© 2022 Swirlds Labs Inc. All rights reserved

•Boolean

• Integers  
(int, int8, int16, …, int256, uint, uint8, uint16, …, uint256)

•Fixed Point Numbers (👷)

•Address

•Byte Arrays (fixed and dynamically-sized)

•Enums

Value Types

@net0pyr | @hendrikEbbers

 

SwirldsLabs.com

© 2022 Swirlds Labs Inc. All rights reserved

•Array

•Map

•Struct

Reference Types

@net0pyr | @hendrikEbbers

 

SwirldsLabs.com

© 2022 Swirlds Labs Inc. All rights reserved

• if, else

•while, do

• for

•break, continue

• return

Control Structures

@net0pyr | @hendrikEbbers

 

SwirldsLabs.com

© 2022 Swirlds Labs Inc. All rights reserved

•state-reverting

• try-catch

• require

• revert

Error Handling

Compiling

Smart Contracts

@net0pyr | @hendrikEbbers

 

SwirldsLabs.com

© 2022 Swirlds Labs Inc. All rights reserved

Hello Smart Contract
// SPDX-License-Identifier: GPL-3.0

pragma solidity >=0.4.16 <0.9.0;

contract HelloWorld {

 function greet() public pure returns (string memory) {

 return "Hello, world!";

 }

}

@net0pyr | @hendrikEbbers

 

SwirldsLabs.com

© 2022 Swirlds Labs Inc. All rights reserved

Compile Solidity
•To execute the smart contract we need to compile it

•The compilation is normally stored in a binary BIN file

SOL

Smart Contract solc

Solidity Compiler

compiled contract

@net0pyr | @hendrikEbbers

 

SwirldsLabs.com

© 2022 Swirlds Labs Inc. All rights reserved

Compile Solidity
•The Solidity compiler solc can easy be installed locally 

 
 

•The compiler provides different ways how it can be
installed locally (brew, npm, …)

https://docs.soliditylang.org/

@net0pyr | @hendrikEbbers

 

SwirldsLabs.com

© 2022 Swirlds Labs Inc. All rights reserved

Compile Solidity
•We can easily compile our smart contract by using solc

from the commandline:
solc --bin -o build/contracts contracts/hello_world.sol

We want to create the bin file Output folder Input

@net0pyr | @hendrikEbbers

 

SwirldsLabs.com

© 2022 Swirlds Labs Inc. All rights reserved

Compile Solidity

SOL

Smart Contract solc

BIN

ABI

JSON

JSON

...

@net0pyr | @hendrikEbbers

 

SwirldsLabs.com

© 2022 Swirlds Labs Inc. All rights reserved

Compile Solidity
• Instead of installing the compiler locally you can use it

wrapped in a docker container
docker run -v $(pwd)/contracts:/contracts ethereum/solc:stable -o /contracts/output --abi --bin

SOL

Smart Contract solc container compiled contract

@net0pyr | @hendrikEbbers

 

SwirldsLabs.com

© 2022 Swirlds Labs Inc. All rights reserved

•As a Java developer I want to integrate the compilation
in my build

Compile Solidity with Maven

SOL

Smart Contract
Java Wrapper

Hedera

For Java Devs

@net0pyr | @hendrikEbbers

 

SwirldsLabs.com

© 2022 Swirlds Labs Inc. All rights reserved

Deploying a smart contract
•To execute a smart contract we need to deploy it on a

ledger

•Public ledgers like Ethereum or Hedera provide public
APIs to interact with the ledger

public api

@net0pyr | @hendrikEbbers

 

SwirldsLabs.com

© 2022 Swirlds Labs Inc. All rights reserved

HAPI - Hedera API
•Rich documentation available online 

 

•API libraries available for several languages

https://docs.hedera.com/guides/docs/hedera-api

[] In development

@net0pyr | @hendrikEbbers

 

SwirldsLabs.com

© 2022 Swirlds Labs Inc. All rights reserved

HAPI - Hedera API
•We will concentrate on Java 

 
 
 

•All Hedera sources can be found at
GitHub 

<dependency>

<groupId>com.hedera.hashgraph</groupId>

<artifactId>sdk</artifactId>

<version>2.17.0</version>

</dependency>

https://github.com/hashgraph/hedera-sdk-java

@net0pyr | @hendrikEbbers

 

SwirldsLabs.com

© 2022 Swirlds Labs Inc. All rights reserved

Hedera Testnet
•We do not want to execute our contracts on the real

Hedera ledger at devolpment time

•Hedera provides a test instance - Hedera Testnet
https://docs.hedera.com/guides/testnet/testnet-access

public api

Hedera Testnet

10,000 HBAR per day

@net0pyr | @hendrikEbbers

 

SwirldsLabs.com

© 2022 Swirlds Labs Inc. All rights reserved

@net0pyr | @hendrikEbbers

 

SwirldsLabs.com

© 2022 Swirlds Labs Inc. All rights reserved

@net0pyr | @hendrikEbbers

 

SwirldsLabs.com

© 2022 Swirlds Labs Inc. All rights reserved

HAPI - Smart contracts
•For executing a smart contract we need do the

following steps:

1. Connect to the ledger

2. Upload the compiled contract to the ledger

3. Create a smart contract out of the binary

4. Call a function of the smart contract

@net0pyr | @hendrikEbbers

 

SwirldsLabs.com

© 2022 Swirlds Labs Inc. All rights reserved

HAPI - Deploy a smart contract
final ContractCreateFlow flow = new ContractCreateFlow()

 .setBytecode(bytecodeInHex)

 .setGas(1_000_000); 
 
 

final TransactionResponse transactionResponse = flow.execute(client);

final TransactionReceipt receipt = transactionResponse.getReceipt(client);

return receipt.contractId;

??

@net0pyr | @hendrikEbbers

 

SwirldsLabs.com

© 2022 Swirlds Labs Inc. All rights reserved

HAPI - Gas definition
•When creating a transaction a gas value needs to be

defined

•The value defines the maximum of gas that the
transaction can cost

•Transaction will be aborted if the cost is too high

transaction failed pre-check with
the status `INSUFFICIENT_GAS`

@net0pyr | @hendrikEbbers

 

SwirldsLabs.com

© 2022 Swirlds Labs Inc. All rights reserved

HAPI - call contract function
final ContractCallQuery contractQuery = new ContractCallQuery()

	 	 .setGas(100000)

	 	 .setContractId(contractId)

	 	 .setFunction("greet");

ContractFunctionResult result = contractQuery.execute(client);

@net0pyr | @hendrikEbbers

 

SwirldsLabs.com

© 2022 Swirlds Labs Inc. All rights reserved

web3j
•Next to the Hedera SDK the web3j lib can be used

•web3j has been created for Ethereum

•Based on standards or widely adapted functionality it
can be used for Hedera

@net0pyr | @hendrikEbbers

 

SwirldsLabs.com

© 2022 Swirlds Labs Inc. All rights reserved

web3j
•web3j provides API to interact with smart contracts

•web3j provides functionality to create Java wrappers
for smart contracts

•web3j provides wrapper for smart contract
compilation

•web3j provides Maven plugin

(Non-) Fungible

Tokens

@net0pyr | @hendrikEbbers

 

SwirldsLabs.com

© 2022 Swirlds Labs Inc. All rights reserved

Fungible
• Interchangable

•Divisible

•Uniform

Non-Fungible
•Non-Interchangable

•Non-Divisible

•Unique

Avij (talk · contribs), Public domain, via Wikimedia Commons “Pokemon Cards” by Steven Groves is licensed under CC BY 2.0

https://www.flickr.com/photos/stevengroves/4902461620/
https://www.flickr.com/photos/stevengroves/
https://creativecommons.org/licenses/by/2.0/

@net0pyr | @hendrikEbbers

 

SwirldsLabs.com

© 2022 Swirlds Labs Inc. All rights reserved

What is a fungible token?
Contract (ERC-20)

address

id

Token
totalSupply(): uint256

balanceOf(address): uint256

transfer(address, uint256): bool

allowance(address, address): uint256

approve(address, uint256): bool

transferFrom(address, address, uint256): bool

@net0pyr | @hendrikEbbers

 

SwirldsLabs.com

© 2022 Swirlds Labs Inc. All rights reserved

What is a non-fungible token?
Contract (ERC-721)

address

id

Token
balanceOf(owner): balance

ownerOf(tokenId): owner

safeTransferFrom(from, to, tokenId, data)

transferFrom(from, to, tokenId)

approve(to, tokenId)

setApprovalForAll(operator, approved)

getApproved(tokenId): operator

isApprovedForAll(owner, operator): bool

JavaLand Coin

App

@net0pyr | @hendrikEbbers

 

SwirldsLabs.com

© 2022 Swirlds Labs Inc. All rights reserved

Overview

SmartContract

contract JavaCoinContract is ERC20 {

 // …

 getCoinPrice() returns uint

 buyCoins(uint) payable

 sellCoins(uint)

 withdrawHbars(uint)

 mintCoins(uint)

 burnCoins(uint)

}

JavaCoinContract

Generated 
Java Class

JavaCoinService

Service

@net0pyr | @hendrikEbbers

 

SwirldsLabs.com

© 2022 Swirlds Labs Inc. All rights reserved

JavaCoinContract
import "./contracts/token/ERC20/ERC20.sol";

contract JavaCoinContract is ERC20 {

 address payable _owner;

 address payable _treasury;

 uint256 _coinScale;

 uint256 constant _hBarScale = 10 ** 8;

 uint256 _price;

 constructor(uint256 initialSupply) ERC20("JavaLand Coin", "JC") {

 _owner = payable(msg.sender);

 _treasury = payable(address(this));

 _coinScale = 10 ** decimals();

 _mint(address(this), initialSupply);

 _recalculatePrice(0);

 }

 // …

}

@net0pyr | @hendrikEbbers

 

SwirldsLabs.com

© 2022 Swirlds Labs Inc. All rights reserved

JavaCoinContract cont’d
import "./contracts/token/ERC20/ERC20.sol";

contract JavaCoinContract is ERC20 {

 // …

 function _recalculatePrice(int delta) private { /* … */ }

 function getCoinPrice() public view returns (uint) {

 return _price;

 }

 function getCoinsForAccount() public view returns (uint) {

 return balanceOf(msg.sender);

 }

 // …

}

@net0pyr | @hendrikEbbers

 

SwirldsLabs.com

© 2022 Swirlds Labs Inc. All rights reserved

Buy Coins
function buyCoins(uint count) public payable {

 // check input parameters (count > 0 and count < 10% of total supply)

 // TODO

 uint total = count * _price / _coinScale;

 // check that user has enough HBars

 // TODO

 // check that pool contains enough JavaLandCoins

 // TODO

 // recalculate price

 _recalculatePrice();

 // transfer HBars to contract

 // TODO

 // transfer JavaLandCoins to user

 // TODO

}

@net0pyr | @hendrikEbbers

 

SwirldsLabs.com

© 2022 Swirlds Labs Inc. All rights reserved

Commands
// Check conditions

require(bool condition, string message);

// Address of the sender

msg.address

// Get the Hbar balance of an account

address.balance

// Transfer Hbars

(bool success,) = address.call{value: amount}(“");

require(success, "Transfer failed.”);

// Get the total amount of JavaLandCoins

totalSupply();

// Get balance of JavaLandCoins

balanceOf(address account);

// Transfer JavaLandCoins

_transfer(address from, address to, uint amount)

@net0pyr | @hendrikEbbers

 

SwirldsLabs.com

© 2022 Swirlds Labs Inc. All rights reserved

Buy Coins - Solution
function buyCoins(uint count) public payable {

 // check input parameters (count > 0 and count < 10% of total supply)

 require(count > 0, "Count must be greater than 0");

 require(count <= totalSupply() / 10, "Not possible to buy more than 10% of total supply”);

 uint total = count * _price / _coinScale;

 // check that user has enough HBars

 require(msg.sender.balance >= total, "Not enough HBars");

 // check that pool contains enough JavaLandCoins

 require(balanceOf(_treasury) >= count, "Not enough JavaLandCoins in pool");

 // recalculate price

 _recalculatePrice(-int(count));

 // transfer HBars to contract

 (bool success,) = _treasury.call{value: total}("");

 require(success, "Transfer failed.");

 // transfer JavaLandCoins to user

 _transfer(_treasury, msg.sender, count);

}

Michael Heinrichs

@net0pyr

Hendrik Ebbers

@hendrikEbers

