-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathtrain.py
409 lines (346 loc) · 23 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
"""
Copyright (C) 2018 NVIDIA Corporation. All rights reserved.
Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode).
"""
import argparse
import pickle
import numpy as np
import torch
import torch.backends.cudnn as cudnn
import torch.nn.functional as F
from scipy.stats import entropy
from torch import nn
import datetime
import random
from trainer_council import Council_Trainer
from utils import get_all_data_loaders, prepare_sub_folder, write_html, write_loss, get_config, write_2images, Timer, \
load_inception
try:
from itertools import izip as zip
except ImportError: # will be 3.x series
pass
import os
import sys, traceback
import tensorboardX
import shutil
import threading
import torchvision.utils as vutils
import math
from scipy.stats import binom
from tqdm import tqdm
import time
from termcolor import colored
parser = argparse.ArgumentParser()
parser.add_argument('--config', type=str, default='configs/glasses_folder.yaml', help='Path to the config file.')
parser.add_argument('--output_path', type=str, default='.outputs', help="outputs path")
parser.add_argument("--resume", action="store_true")
parser.add_argument("--cuda_device", type=str, default='cuda:0', help="gpu to run on")
opts = parser.parse_args()
# Load experiment setting
config = get_config(opts.config)
max_iter = config['max_iter']
display_size = config['display_size']
config['vgg_model_path'] = opts.output_path
config['cuda_device'] = opts.cuda_device
# FOR REPRODUCIBILITY
def seed_torch(seed=1):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
seed_torch(config['random_seed'])
# Setup model and data loader
train_loader_a, train_loader_b, test_loader_a, test_loader_b = get_all_data_loaders(config)
try:
train_display_images_a = torch.stack([train_loader_a[0].dataset[np.random.randint(train_loader_a[0].__len__())] for _ in range(display_size)]).cuda(config['cuda_device'])
except:
train_display_images_a = torch.stack([train_loader_a[0].dataset[np.random.randint(train_loader_a[0].__len__())] for _ in range(display_size)]).cuda(config['cuda_device'])
try:
train_display_images_b = torch.stack([train_loader_b[0].dataset[np.random.randint(train_loader_b[0].__len__())] for _ in range(display_size)]).cuda(config['cuda_device'])
except:
train_display_images_b = torch.stack([train_loader_b[0].dataset[np.random.randint(train_loader_b[0].__len__())] for _ in range(display_size)]).cuda(config['cuda_device'])
try:
test_display_images_a = torch.stack([test_loader_a[0].dataset[np.random.randint(test_loader_a[0].__len__())] for _ in range(display_size)]).cuda(config['cuda_device'])
except:
# test_display_images_a = torch.stack([test_loader_a[0].dataset[np.random.randint(test_loader_a[0].__len__())] for _ in range(display_size)]).cuda()
test_display_images_a = None
try:
test_display_images_b = torch.stack([test_loader_b[0].dataset[np.random.randint(test_loader_b[0].__len__())] for _ in range(display_size)]).cuda(config['cuda_device'])
except:
test_display_images_b = torch.stack([test_loader_b[0].dataset[np.random.randint(test_loader_b[0].__len__())] for _ in range(display_size)]).cuda(config['cuda_device'])
trainer = Council_Trainer(config, config['cuda_device'])
trainer.cuda(config['cuda_device'])
# Setup logger and output folders
model_name = os.path.splitext(os.path.basename(opts.config))[0]
output_directory = os.path.join(opts.output_path, model_name)
checkpoint_directory, image_directory, log_directory = prepare_sub_folder(output_directory)
config_backup_folder = os.path.join(output_directory, 'config_backup')
if not os.path.exists(config_backup_folder):
os.mkdir(config_backup_folder)
shutil.copy(opts.config, os.path.join(config_backup_folder, ('config_backup_' + str(datetime.datetime.now())[:19] + '.yaml').replace(' ', '_'))) # copy config file to output folder
m1_1_a2b, s1_1_a2b, m1_1_b2a, s1_1_b2a = None, None, None, None # save statisices for the fid calculation
# Start training
iterations = trainer.resume(checkpoint_directory, hyperparameters=config) if opts.resume else 0
def launchTensorBoard(port=6006):
import os
os.system('tensorboard --logdir=' + log_directory + ' --port=' + str(port) + ' > /dev/null 2>/dev/null')
return
if config['misc']['start_tensor_board']:
port = config['misc']['start_tensor_board port']
t_tensorBoard = threading.Thread(target=launchTensorBoard, args=([port])) # launches TensorBoard in a diffrent thread
t_tensorBoard.start()
print(colored('tensorboard board launched at http://127.0.0.1:' + str(port), color='yellow', attrs=['underline', 'bold', 'blink', 'reverse']))
train_writer = tensorboardX.SummaryWriter(log_directory, purge_step=iterations)
if config['misc']['do_telegram_report']:
try:
import telegram
from telegram.ext import Updater, MessageHandler, Filters
except:
print(colored('Failed to load Telegram Try: \n1) conda install -c conda-forge python-telegram-bot. \n OR \n2) in \".yaml\" file change do_telegram_report to False \n in the meantime Continuing without ....', color='red', attrs=['underline', 'bold', 'blink', 'reverse']))
config['misc']['do_telegram_report'] = False
if config['misc']['do_telegram_report']:
in_ = ''
confidential_yaml_file_path = './confidential_do_not_upload_to_github.yaml'
if not os.path.exists(confidential_yaml_file_path):
in_ = input(colored('do_telegram_report is set to True If you would like to set up telegram press Enter. If you just Want to continue write \"NO\": \n'))
if in_.upper() != 'NO':
with open(confidential_yaml_file_path, 'w') as confidential_yaml_file:
confidential_yaml_file.write('bot_token: xxxx\n')
confidential_yaml_file.write('chat_id: xxxx')
print(colored('Create a telegram bot. this is done by: \n1) downloding and signing into telegram. \n2) starting a chat with \"BotFather\" \n3) send \"BotFather\" the text "/newbot", then follow the "BotFather" instraction to creat the bot \n4)when you are done you will recive a the new bot token. enter the token into the file: "' + confidential_yaml_file_path + ' which was create in the currnt directory', color='red', attrs=['underline', 'bold', 'blink', 'reverse']))
print('==== You can turn telegram report OFF from the config.yaml file ====')
input('when you are done press ENTER.')
if in_.upper() != 'NO':
confidential_conf = get_config(confidential_yaml_file_path)
while confidential_conf['bot_token'] == 'xxxx':
print(colored('TOKEN not defined yet'))
print(colored('Create a telegram bot. this is done by 1) downloding and signing into telegram. \n2) starting a chat with \"BotFather\" \n3) send him the text "/newbot", then follow the "BotFather" instraction to creat the bot \n4)when you are done you will recive a the new bot token. enter the token into the file: "' + confidential_yaml_file_path + 'which was create in the currnt directory', color='red', attrs=['underline', 'bold', 'blink', 'reverse']))
print('==== You can turn telegram report OFF from the config.yaml file ====')
input(colored('when you are done press Enter'))
confidential_conf = get_config(confidential_yaml_file_path)
def telegram_command(update, context):
context.bot.sendMessage(update.message.chat_id, text='enter chat_id in to: ' + confidential_yaml_file_path + ' as:')
context.bot.sendMessage(update.message.chat_id, text='chat_id: ' + str(update.message.chat_id))
updater = Updater(token=confidential_conf['bot_token'], use_context=True)
dispatcher = updater.dispatcher
dispatcher.add_handler(MessageHandler(Filters.text, telegram_command))
updater.start_polling()
while confidential_conf['chat_id'] == 'xxxx':
print(colored('CHAT ID is not defined send your telegram bot a random message to get your chat id, then enter it into the file:' + confidential_yaml_file_path, color='red', attrs=['underline', 'bold', 'blink', 'reverse']))
print('==== You can turn telegram report OFF from the config.yaml file ====')
input('when you are done press Enter')
confidential_conf = get_config(confidential_yaml_file_path)
updater.stop()
telegram_bot = telegram.Bot(token=confidential_conf['bot_token'])
def telegram_bot_send_message(bot_message):
try:
telegram_bot.send_message(chat_id=confidential_conf['chat_id'], text=config['misc']['telegram_report_add_prefix'] + bot_message)
except:
print('telegram send_message Failed')
def telegram_bot_send_photo(bot_image, caption=None):
try:
telegram_bot.send_photo(chat_id=confidential_conf['chat_id'], photo=bot_image, caption=config['misc']['telegram_report_add_prefix'] + caption)
except:
print('telegram send_photo Failed')
def telegram_bot_send_document(bot_document_path, filename=None):
try:
telegram_bot.send_document(chat_id=confidential_conf['chat_id'], document=open(bot_document_path, 'rb'), filename=config['misc']['telegram_report_add_prefix'] + filename)
except:
print('telegram send_document Failed')
else:
config['misc']['do_telegram_report'] = False
print('You can set do_telegram_report to False to not be asked again')
def test_fid(dataset1, dataset2, iteration, train_writer, name, m1=None, s1=None, retun_m1_s1=False, batch_size=10, dims=2048, cuda=True):
import pytorch_fid.fid_score
fid_paths = [dataset1, dataset2]
try:
fid_value, m1, s1 = pytorch_fid.fid_score.calculate_fid_given_paths_save_first_domain_statistic(paths=fid_paths,
batch_size=batch_size,
cuda=cuda,
dims=dims,
m1=m1, s1=s1)
train_writer.add_scalar('FID score/' + name, fid_value, iterations)
print(colored('iteration: ' + str(iteration) + ' ,' + name + ' aprox FID: ' + str(fid_value), color='green', attrs=['underline', 'bold', 'blink', 'reverse']))
if config['misc']['do_telegram_report']:
telegram_bot_send_message('iteration: ' + str(iteration) + ' ,' + name + ' aprox FID: ' + str(fid_value))
except Exception as e:
print(str(e))
fid_value, m1, s1 = 0, None, None
if not retun_m1_s1:
return
return m1, s1
t = time.time()
dis_iter = 1
try:
if config['misc']['do_telegram_report']:
telegram_bot_send_message('Started Training!')
send_telegram_config = config['misc']['do_telegram_send_config_file']
if send_telegram_config:
try:
telegram_bot_send_document(bot_document_path=opts.config, filename='config.txt')
except:
print('telegram config message send failed')
while True:
tmp_train_loader_a, tmp_train_loader_b = (train_loader_a[0], train_loader_b[0])
for it, (images_a, images_b) in enumerate(zip(tmp_train_loader_a, tmp_train_loader_b)):
images_a, images_b = images_a.cuda(config['cuda_device']).detach(), images_b.cuda(config['cuda_device']).detach()
print("Iteration: " + str(iterations + 1) + "/" + str(max_iter) + " Elapsed time " + str(time.time()-t)[:5])
t = time.time()
if iterations > max_iter:
sys.exit('Finish training')
# Main training code
config['iteration'] = iterations
numberOf_dis_relative_iteration = config['dis']['numberOf_dis_relative_iteration'] if config['dis']['numberOf_dis_relative_iteration'] > 0 else 1
if dis_iter < numberOf_dis_relative_iteration: # training the discriminetor multiple times for each generator update
dis_iter += 1
trainer.dis_update(images_a, images_b, config)
continue
else:
trainer.dis_update(images_a, images_b, config)
dis_iter = 1
if config['council']['numberOfCouncil_dis_relative_iteration'] > 0:
trainer.dis_council_update(images_a, images_b, config) # the multiple iterating happens inside dis_council_update
trainer.gen_update(images_a, images_b, config, iterations)
torch.cuda.synchronize(device=config['cuda_device'])
iterations += 1
# write training stats in log file
if (iterations + 1) % config['log_iter'] == 0:
write_loss(iterations, trainer, train_writer)
# test FID
if config['misc']['do_test_Fid'] and (iterations + 1) % config['misc']['test_Fid_iter'] == 0:
if config['do_a2b']:
tmp_path_im_a2b = image_directory + '/tmp/a2b'
if not os.path.exists(tmp_path_im_a2b):
print("Creating directory: {}".format(tmp_path_im_a2b))
os.makedirs(tmp_path_im_a2b)
filelist2 = [f for f in os.listdir(tmp_path_im_a2b) if f.endswith(".jpg")]
for f2 in filelist2:
os.remove(os.path.join(tmp_path_im_a2b, f2))
if config['do_b2a']:
tmp_path_im_b2a = image_directory + '/tmp/b2a'
if not os.path.exists(tmp_path_im_b2a):
print("Creating directory: {}".format(tmp_path_im_b2a))
os.makedirs(tmp_path_im_b2a)
filelist1 = [f for f in os.listdir(tmp_path_im_b2a) if f.endswith(".jpg")]
for f1 in filelist1:
os.remove(os.path.join(tmp_path_im_b2a, f1))
if config['do_a2b']:
tmp_images_a = test_loader_a[0].dataset[0].cuda(config['cuda_device']).unsqueeze(0)
if config['do_b2a']:
tmp_images_b = test_loader_b[0].dataset[0].cuda(config['cuda_device']).unsqueeze(0)
ind_a2b = 0
ind_b2a = 0
for k in tqdm(range(1, config['misc']['test_Fid_num_of_im']), desc='Creating images for tests'):
c_ind = np.random.randint(config['council']['council_size'])
if config['do_a2b']:
tmp_images_a = test_loader_a[0].dataset[k].cuda(config['cuda_device']).unsqueeze(0)
styles = torch.randn(tmp_images_a.shape[0], config['gen']['style_dim'], 1, 1).cuda(config['cuda_device'])
tmp_res_imges_a2b = trainer.sample(x_a=tmp_images_a, x_b=None, s_a=styles, s_b=styles)
tmp_res_imges_a2b = tmp_res_imges_a2b[2][c_ind].unsqueeze(0)
for tmp_res_imges_a2b_t in tmp_res_imges_a2b:
vutils.save_image(tmp_res_imges_a2b_t, tmp_path_im_a2b + '/' + str(ind_a2b) + '.jpg')
ind_a2b += 1
if config['do_b2a']:
tmp_images_b = test_loader_b[0].dataset[k].cuda(config['cuda_device']).unsqueeze(0)
styles = torch.randn(tmp_images_b.shape[0], config['gen']['style_dim'], 1, 1).cuda(config['cuda_device'])
tmp_res_imges_b2a = trainer.sample(x_a=None, x_b=tmp_images_b, s_a=styles, s_b=styles)
tmp_res_imges_b2a = tmp_res_imges_b2a[6][c_ind].unsqueeze(0)
for tmp_res_imges_b2a_t in tmp_res_imges_b2a:
vutils.save_image(tmp_res_imges_b2a_t, tmp_path_im_b2a + '/' + str(ind_b2a) + '.jpg')
ind_b2a += 1
if config['do_a2b']:
dataset_for_fid_B = os.path.join(config['data_root'], 'testB')
tmp_path_a2b_save_stat = dataset_for_fid_B
if os.path.exists(tmp_path_a2b_save_stat + '/m1'):
with open(tmp_path_a2b_save_stat + '/m1', 'rb') as f:
m1_1_a2b = pickle.load(f)
if os.path.exists(tmp_path_a2b_save_stat + '/s1'):
with open(tmp_path_a2b_save_stat + '/s1', 'rb') as f:
s1_1_a2b = pickle.load(f)
if m1_1_a2b is None or s1_1_a2b is None:
print('fid test initialization')
m1_1_a2b, s1_1_a2b = test_fid(dataset_for_fid_B, tmp_path_im_a2b, iterations, train_writer, 'B', retun_m1_s1=True, batch_size=10)
if m1_1_a2b is not None and s1_1_a2b is not None:
with open(tmp_path_a2b_save_stat + '/m1', 'wb') as f:
pickle.dump(m1_1_a2b, f)
with open(tmp_path_a2b_save_stat + '/s1', 'wb') as f:
pickle.dump(s1_1_a2b, f)
else:
_ = test_fid(dataset_for_fid_B, tmp_path_im_a2b, iterations, train_writer, 'B', m1_1_a2b, s1_1_a2b)
if config['do_b2a']:
dataset_for_fid_A = os.path.join(config['data_root'], 'testA')
tmp_path_b2a_save_stat = dataset_for_fid_A
if os.path.exists(tmp_path_b2a_save_stat + '/m1'):
with open(tmp_path_b2a_save_stat + '/m1', 'rb') as f:
m1_1_b2a = pickle.load(f)
if os.path.exists(tmp_path_b2a_save_stat + '/s1'):
with open(tmp_path_b2a_save_stat + '/s1', 'rb') as f:
s1_1_b2a = pickle.load(f)
if m1_1_b2a is None or s1_1_b2a is None:
print('fid test initialization')
m1_1_b2a, s1_1_b2a = test_fid(dataset_for_fid_A, tmp_path_im_b2a, iterations, train_writer, 'A', retun_m1_s1=True, batch_size=10)
if m1_1_b2a is not None and s1_1_b2a is not None:
with open(tmp_path_b2a_save_stat + '/m1', 'wb') as f:
pickle.dump(m1_1_b2a, f)
with open(tmp_path_b2a_save_stat + '/s1', 'wb') as f:
pickle.dump(s1_1_b2a, f)
else:
_ = test_fid(dataset_for_fid_A, tmp_path_im_b2a, iterations, train_writer, 'A', m1_1_b2a, s1_1_b2a)
# Write images
if (iterations + 1) % config['image_save_iter'] == 0:
with torch.no_grad():
test_image_outputs = trainer.sample(test_display_images_a, test_display_images_b)
train_image_outputs = trainer.sample(train_display_images_a, train_display_images_b)
test_gen_a2b_im, test_gen_b2a_im = write_2images(test_image_outputs,
display_size * config['council']['council_size'],
image_directory, 'test_%08d' % (iterations + 1), do_a2b=config['do_a2b'], do_b2a=config['do_b2a'])
train_gen_a2b_im, train_gen_b2a_im = write_2images(train_image_outputs,
display_size * config['council']['council_size'],
image_directory, 'train_%08d' % (iterations + 1), do_a2b=config['do_a2b'], do_b2a=config['do_b2a'])
if config['do_a2b']:
train_writer.add_image('a2b/train', train_gen_a2b_im, iterations)
train_writer.add_image('a2b/test', test_gen_a2b_im, iterations)
if config['misc']['do_telegram_report']:
telegram_bot_send_message('iteration: ' + str(iterations))
telegram_bot_send_document(os.path.join(image_directory, 'gen_a2b_' + 'train_%08d' % (iterations + 1) + '.jpg'), filename='train_gen_a2b_im-iteration: ' + str(iterations) + '.jpg')
telegram_bot_send_document(os.path.join(image_directory, 'gen_a2b_' + 'test_%08d' % (iterations + 1) + '.jpg'), filename='test_gen_a2b_im-iteration: ' + str(iterations) + '.jpg')
if config['do_b2a']:
train_writer.add_image('b2a/train', train_gen_b2a_im, iterations)
train_writer.add_image('b2a/test', test_gen_b2a_im, iterations)
if config['misc']['do_telegram_report']:
telegram_bot_send_message('iteration: ' + str(iterations))
telegram_bot_send_document(os.path.join(image_directory, 'gen_b2a_' + 'train_%08d' % (iterations + 1) + '.jpg'), filename='train_gen_b2a_im-iteration: ' + str(iterations) + '.jpg')
telegram_bot_send_document(os.path.join(image_directory, 'gen_b2a_' + 'test_%08d' % (iterations + 1) + '.jpg'), filename='test_gen_b2a_im-iteration: ' + str(iterations) + '.jpg')
# HTML
write_html(output_directory + "/index.html", iterations + 1, config['image_save_iter'], 'images', do_a2b=config['do_a2b'], do_b2a=config['do_b2a'])
if (iterations + 1) % config['image_display_iter'] == 0:
with torch.no_grad():
image_outputs = trainer.sample(train_display_images_a, train_display_images_b)
write_2images(image_outputs, display_size * config['council']['council_size'], image_directory,
'train_current', do_a2b=config['do_a2b'], do_b2a=config['do_b2a'])
# Save network weights
if (iterations + 1) % config['snapshot_save_iter'] == 0:
try:
trainer.save(checkpoint_directory, iterations)
except Exception as e:
print('================================= Faild to save check avileble memory =================================')
print(e)
if config['misc']['do_telegram_report']:
telegram_bot_send_message('problem Occurred need attention!')
input("Clear space and press enter to retry ....")
print("retrying to save...")
trainer.save(checkpoint_directory, iterations)
if config['misc']['do_telegram_report']:
telegram_bot_send_message('snapshot saved iter: ' + str(iterations))
trainer.update_learning_rate()
except Exception as e:
print('Error')
print('-' * 60)
traceback.print_exc(file=sys.stdout)
print('-' * 60)
print(e)
print(colored('Training STOPED!', color='red', attrs=['underline', 'bold', 'blink', 'reverse']))
if config['misc']['do_telegram_report']:
telegram_bot_send_message('Error Training STOPED!')