This repository was archived by the owner on Aug 20, 2024. It is now read-only.
-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbackground_tasks.py
264 lines (232 loc) · 11.2 KB
/
background_tasks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
from flask import Flask, request, jsonify
import psycopg2
from psycopg2.extras import RealDictCursor
import base64
import logging
import time
import queue
import threading
import cv2
import requests
import json
from datetime import datetime, timedelta
import os
from config import DB_HOST, DB_NAME, DB_USER, DB_PASS, DB_PORT, \
HOME_ASSISTANT_API, LONG_LIVED_ACCESS_TOKEN, \
API_KEY_DVLA, RTSP_URL, VIDEOS_DIR, ENABLE_VIDEO_CAPTURE, \
HOME_ASSISTANT_SENSOR_NAME, BACKGROUND_TASK_POLL_RATE, \
BUFFER_DURATION_SECONDS, FPS
app = Flask(__name__)
# Configure logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
# Ensure video directory exists
if not os.path.exists(VIDEOS_DIR):
os.makedirs(VIDEOS_DIR)
# Database connection
def get_db_connection():
return psycopg2.connect(
host=DB_HOST, database=DB_NAME, user=DB_USER,
password=DB_PASS, port=DB_PORT, cursor_factory=RealDictCursor
)
# Fetch vehicle details from DVLA API
def get_vehicle_details(registration_number):
api_url = 'https://driver-vehicle-licensing.api.gov.uk/vehicle-enquiry/v1/vehicles'
headers = {'x-api-key': API_KEY_DVLA, 'Content-Type': 'application/json'}
data = {'registrationNumber': registration_number}
response = requests.post(api_url, headers=headers, json=data)
return response.json() if response.status_code == 200 else None
# Capture an image from the camera
def fetch_image():
cap = cv2.VideoCapture(RTSP_URL)
if not cap.isOpened():
logging.error('Failed to open RTSP stream')
return None
ret, frame = cap.read()
if not ret:
logging.error('Failed to fetch frame from RTSP stream')
return None
_, buffer = cv2.imencode('.jpg', frame)
return base64.b64encode(buffer).decode('utf-8')
def process_plate_data(license_plate, capture_time):
if not license_plate:
logging.error("No license plate data to process.")
return
original_plate = license_plate
print(f"Original Plate: {original_plate}")
def replace_zero_with_O(license_plate):
modified_plate = ''
for i, char in enumerate(license_plate):
if char == '0' and not (i == 2 or i == 5):
modified_plate += 'O'
else:
modified_plate += char
return modified_plate
plate_after_zero_replacement = replace_zero_with_O(original_plate)
print(f"Plate after replacing zeros: {plate_after_zero_replacement}")
def correct_plate_characters(license_plate):
char_map = {'0': 'O', '1': 'I', '4': 'A', '5': 'S', '7': 'T', '8': 'B'}
positions = [0, 1, 4, 5, 6] # Adjusted positions for 7-digit plates
return ''.join([char_map.get(char, char) if i in positions else char for i, char in enumerate(license_plate)])
corrected_plate = correct_plate_characters(plate_after_zero_replacement)
print(f"Final Corrected Plate (Sent to DVLA): {corrected_plate}")
if not (7 <= len(corrected_plate) <= 8):
logging.warning(f"Corrected license plate '{corrected_plate}' does not meet length constraints.")
return
conn = get_db_connection()
cursor = conn.cursor()
try:
cursor.execute('SELECT id, recent_capture_time FROM license_plates WHERE plate_number = %s', (license_plate,))
plate = cursor.fetchone()
# Fetch new image and video for each detection
image_data = fetch_image()
video_url = capture_video_snippet(license_plate, 10) if ENABLE_VIDEO_CAPTURE else None
if plate:
# Checking if the plate data needs to be updated
if datetime.datetime.strptime(capture_time, '%Y-%m-%d %H:%M:%S') - plate['recent_capture_time'] > datetime.timedelta(days=3):
vehicle_details = get_vehicle_details(license_plate)
# Update vehicle details if new data is available
if datetime.strptime(capture_time, '%Y-%m-%d %H:%M:%S') - plate['recent_capture_time'] > timedelta(days=3):
vehicle_details = get_vehicle_details(license_plate)
update_vehicle_details(cursor, plate['id'], vehicle_details)
delete_old_video(plate['id'], cursor)
cursor.execute('''UPDATE license_plates SET
recent_capture_time = %s,
image_data = %s,
video_url = %s
WHERE id = %s''',
(capture_time, image_data, video_url, plate['id']))
else:
vehicle_details = get_vehicle_details(license_plate)
cursor.execute('''INSERT INTO license_plates (plate_number, capture_time, recent_capture_time, image_data, video_url,
car_make, car_color, fuel_type, mot_status, tax_status, year_of_manufacture, tax_due_date, mot_expiry_date)
VALUES (%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s)''',
(license_plate, capture_time, capture_time, image_data, video_url,
vehicle_details.get('make'), vehicle_details.get('color'),
vehicle_details.get('fuelType'), vehicle_details.get('motStatus'),
vehicle_details.get('taxStatus'), vehicle_details.get('yearOfManufacture'),
vehicle_details.get('taxDueDate'), vehicle_details.get('motExpiryDate')))
conn.commit()
except Exception as e:
logging.error(f"Error processing plate data: {e}")
conn.rollback()
finally:
cursor.close()
conn.close()
def update_vehicle_details(cursor, plate_id, vehicle_details):
cursor.execute('''UPDATE license_plates SET
car_make = %s,
car_color = %s,
fuel_type = %s,
mot_status = %s,
tax_status = %s,
year_of_manufacture = %s,
tax_due_date = %s,
mot_expiry_date = %s
WHERE id = %s''',
(vehicle_details.get('make'), vehicle_details.get('color'),
vehicle_details.get('fuelType'), vehicle_details.get('motStatus'),
vehicle_details.get('taxStatus'), vehicle_details.get('yearOfManufacture'),
vehicle_details.get('taxDueDate'), vehicle_details.get('motExpiryDate'),
plate_id))
def delete_old_video(plate_id, cursor):
cursor.execute('SELECT video_url FROM license_plates WHERE id = %s', (plate_id,))
video = cursor.fetchone()
if video and video['video_url']:
old_video_path = os.path.join(VIDEOS_DIR, video['video_url'].split('/')[-1])
if os.path.exists(old_video_path):
os.remove(old_video_path)
def buffer_rtsp_stream(frame_queue):
"""
Continuously read from RTSP stream and store frames in a queue.
:param frame_queue: A queue object to store frames.
"""
cap = cv2.VideoCapture(RTSP_URL)
while True:
ret, frame = cap.read()
if ret:
if frame_queue.full():
frame_queue.get() # Remove oldest frame if the queue is full
frame_queue.put((datetime.now(), frame)) # Store timestamp and frame
# Global queue to hold frames
#frame_queue = queue.Queue(maxsize=100) # Adjust size as needed
# Start the buffering in a separate thread
#threading.Thread(target=buffer_rtsp_stream, args=(frame_queue,), daemon=True).start()
#def capture_video_snippet(license_plate, duration_seconds, pre_capture_duration=5):
"""
Capture a video snippet around the detection time.
:param license_plate: License plate number to identify the video file.
:param duration_seconds: Total duration of the video to capture.
:param pre_capture_duration: Duration to capture before the current time (default 5 seconds).
:return: Filename of the captured video.
"""
rtsp_url = RTSP_URL
filename = f"{license_plate}.mp4"
output_file = os.path.join(VIDEOS_DIR, filename)
# Attempt to connect to the RTSP stream
cap = connect_to_rtsp(rtsp_url)
if cap is None:
logging.error("Failed to connect to RTSP stream")
return None
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter(output_file, fourcc, FPS, (640, 480))
end_time = datetime.now() + timedelta(seconds=duration_seconds)
while datetime.now() < end_time:
ret, frame = cap.read()
if ret:
out.write(frame)
else:
logging.error("Failed to read frame from RTSP stream")
cap = connect_to_rtsp(rtsp_url)
if cap is None:
break
cap.release()
out.release()
return filename
#def connect_to_rtsp(rtsp_url, retry_interval=5, max_attempts=3):
"""
Attempt to connect to an RTSP stream with retries.
:param rtsp_url: URL of the RTSP stream.
:param retry_interval: Time in seconds to wait between retries.
:param max_attempts: Maximum number of attempts to connect.
:return: cv2.VideoCapture object or None if unable to connect.
"""
attempts = 0
while attempts < max_attempts:
cap = cv2.VideoCapture(rtsp_url)
if cap.isOpened():
return cap
logging.warning(f"Unable to connect to RTSP stream. Attempt {attempts + 1} of {max_attempts}. Retrying in {retry_interval} seconds.")
time.sleep(retry_interval)
attempts += 1
logging.error("Failed to connect to RTSP stream after multiple attempts.")
return None
def fetch_license_plate_data():
headers = {'Authorization': f'Bearer {LONG_LIVED_ACCESS_TOKEN}', 'Content-Type': 'application/json'}
url = f"{HOME_ASSISTANT_API}states/{HOME_ASSISTANT_SENSOR_NAME}"
response = requests.get(url, headers=headers, timeout=10)
if response.status_code == 200 and response.json().get('state') != 'none':
license_plate = response.json().get('state')
capture_time = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
return license_plate, capture_time
return None, None
def background_task():
logging.info("Background task started.")
try:
while True:
result = fetch_license_plate_data()
if result:
license_plate, capture_time = result
logging.info(f"License Plate Detected: {license_plate}")
process_plate_data(license_plate, capture_time)
time.sleep(BACKGROUND_TASK_POLL_RATE)
except KeyboardInterrupt:
print("License Plate Polling has stopped")
@app.route('/add_plate_data_with_image', methods=['POST'])
def add_plate_data_with_image():
data = request.json
license_plate = data['plate_number']
capture_time = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
process_plate_data(license_plate, capture_time)
return jsonify({'message': 'Data processed'}), 200
if __name__ == '__main__':
background_task()