-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_attr.py
80 lines (57 loc) · 2.34 KB
/
train_attr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
#!/usr/bin/env python
from __future__ import print_function
import pickle
import sklearn
import numpy as np
import glob
import os
import neukrill_net.utils as utils
import neukrill_net.highlevelfeatures as highlevelfeatures
import sklearn.preprocessing
import sklearn.ensemble
import sklearn.linear_model
import sklearn.cross_validation
import sklearn.dummy
from sklearn.externals import joblib
import sklearn.metrics
def main():
# this should be parsed from json, but hardcoded for now
#attributes_settings = ['width','height']
#pkl_file = 'imsizeLR.pkl'
#attributes_settings = ['numpixels','aspectratio']
#pkl_file = 'imsizeLR_alt.pkl'
attributes_settings = ['width','height','mean','stderr','propwhite','propbool','propblack']
pkl_file = 'imattr1.pkl'
# Load the settings, providing
settings = utils.Settings('settings.json')
# Make the wrapper function
processing = highlevelfeatures.BasicAttributes(attributes_settings)
# Load the training data, with the processing applied
X, y = utils.load_data(settings.image_fnames, classes=settings.classes,
processing=processing)
# Encode the labels
label_encoder = sklearn.preprocessing.LabelEncoder()
y = label_encoder.fit_transform(y)
# just a dummy uniform probability classifier for working purposes
#clf = sklearn.dummy.DummyClassifier(strategy='uniform')
#clf = sklearn.linear_model.SGDClassifier(n_jobs=-1,
# loss='log')
#clf = sklearn.ensemble.RandomForestClassifier(n_jobs=-1,
# n_estimators=100,
# verbose=1)
# clf = sklearn.svm.SVC(probability=True)
clf = sklearn.linear_model.LogisticRegression()
cv = sklearn.cross_validation.StratifiedShuffleSplit(y)
# Try cross-validating
results = []
for train, test in cv:
clf.fit(X[train], y[train])
p = clf.predict_proba(X[test])
results.append(sklearn.metrics.log_loss(y[test], p))
print(results)
print('CV average = {}'.format(np.mean(results)))
# Train on the whole thing and save model for later
clf.fit(X,y)
joblib.dump(clf, pkl_file, compress=3)
if __name__=='__main__':
main()