-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainPy.py
87 lines (65 loc) · 2.38 KB
/
trainPy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import nltk
from nltk.stem.lancaster import LancasterStemmer
import numpy as np
import tensorflow as tf
import random
import json
import sys
import pickle
stemmer = LancasterStemmer()
jsonFiles = ["intents.json", "loanIntents.json"]
pickleFiles = ["data.pickle", "data.pickle.loan"]
models = ["modelClass", "modelLoan"]
for i in range(0, len(jsonFiles)):
with open(jsonFiles[i]) as file:
data = json.load(file)
# print("This works just fine dont worry")
try:
#If you add something in the intents.json file then deliberately create an error here
x
with open(pickleFiles[i], "rb") as f:
words, labels, training, output = pickle.load(f)
except:
words = []
labels = []
docs_x = []
docs_y = []
for intent in data["intents"]:
for pattern in intent["patterns"]:
wrds = nltk.word_tokenize(pattern)
words.extend(wrds)
docs_x.append(wrds)
docs_y.append(intent["tag"])
if(intent["tag"] not in labels):
labels.append(intent["tag"])
words = [stemmer.stem(w.lower()) for w in words]
words = sorted(list(set(words)))
labels = sorted(labels)
training = []
output = []
out_empty = [0 for _ in range(len(labels))]
for x, doc in enumerate(docs_x):
bag = []
wrds = [stemmer.stem(w) for w in doc if w != "?"]
#One hot encoding or something similar sounding
for w in words:
if(w in wrds):
bag.append(1)
else:
bag.append(0)
output_row = out_empty[:]
output_row[labels.index(docs_y[x])] = 1
training.append(bag)
output.append(output_row)
training = np.array(training)
output = np.array(output)
with open(pickleFiles[i], "wb") as f:
pickle.dump((words, labels, training, output), f)
model = tf.keras.Sequential([
tf.keras.layers.Dense(8, input_shape=[len(training[0])]),
tf.keras.layers.Dense(8),
tf.keras.layers.Dense(len(output[0]), activation="softmax"),
])
model.compile(optimizer="adam", loss="categorical_crossentropy", metrics=["accuracy"])
model.fit(training, output, epochs=300, batch_size=8)
model.save(models[i] + ".h5")