@@ -310,11 +310,15 @@ def train(train_loader, model, criterion, optimizer, epoch):
310
310
if args .rank == 0 and i % args .print_freq == 0 and i > 1 :
311
311
print ('Epoch: [{0}][{1}/{2}]\t '
312
312
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t '
313
+ 'Speed {3:.3f} ({4:.3f})\t '
313
314
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t '
314
315
'Loss {loss.val:.4f} ({loss.avg:.4f})\t '
315
316
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t '
316
317
'Prec@5 {top5.val:.3f} ({top5.avg:.3f})' .format (
317
- epoch , i , len (train_loader ), batch_time = batch_time ,
318
+ epoch , i , len (train_loader ),
319
+ args .world_size * args .batch_size / batch_time .val ,
320
+ args .world_size * args .batch_size / batch_time .avg ,
321
+ batch_time = batch_time ,
318
322
data_time = data_time , loss = losses , top1 = top1 , top5 = top5 ))
319
323
320
324
@@ -363,10 +367,14 @@ def validate(val_loader, model, criterion):
363
367
if args .rank == 0 and i % args .print_freq == 0 :
364
368
print ('Test: [{0}/{1}]\t '
365
369
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t '
370
+ 'Speed {2:.3f} ({3:.3f})\t '
366
371
'Loss {loss.val:.4f} ({loss.avg:.4f})\t '
367
372
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t '
368
373
'Prec@5 {top5.val:.3f} ({top5.avg:.3f})' .format (
369
- i , len (val_loader ), batch_time = batch_time , loss = losses ,
374
+ i , len (val_loader ),
375
+ args .world_size * args .batch_size / batch_time .val ,
376
+ args .world_size * args .batch_size / batch_time .avg ,
377
+ batch_time = batch_time , loss = losses ,
370
378
top1 = top1 , top5 = top5 ))
371
379
372
380
input , target = prefetcher .next ()
0 commit comments