-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathdistil_model_embeddings.py
244 lines (199 loc) · 8.04 KB
/
distil_model_embeddings.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
# SPDX-FileCopyrightText: Copyright (c) <year> NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
import timm
import numpy as np
import argparse
import glob
import os
from torch.utils.data import (
Dataset,
DataLoader
)
from PIL import Image
import tqdm
import torch.nn.functional as F
import json
from torchvision.transforms import (
Compose,
ToTensor,
Normalize,
Resize,
CenterCrop
)
from torch.utils.tensorboard import SummaryWriter
IMAGENET_DEFAULT_MEAN = (0.485, 0.456, 0.406)
IMAGENET_DEFAULT_STD = (0.229, 0.224, 0.225)
def get_image_id_from_path(image_path):
return os.path.basename(image_path).split('.')[0]
def get_embedding_path(embedding_folder, image_id):
return os.path.join(embedding_folder, image_id + ".npy")
def find_images(folder: str):
image_paths = glob.glob(os.path.join(args.images_folder, "*.jpg"))
image_paths += glob.glob(os.path.join(args.images_folder, "*.png"))
return image_paths
class ImageEmbeddingDataset(Dataset):
def __init__(self, image_paths, embedding_paths, transform=None):
self.image_paths = image_paths
self.embedding_paths = embedding_paths
self.transform = transform
def __len__(self):
return len(self.image_paths)
def __getitem__(self, index):
image = Image.open(self.image_paths[index]).convert("RGB")
if self.transform is not None:
image = self.transform(image)
embedding = np.load(self.embedding_paths[index])
return image, embedding
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("model_name", type=str)
parser.add_argument("images_folder", type=str)
parser.add_argument("embeddings_folder", type=str)
parser.add_argument("output_dir", type=str)
parser.add_argument("--image_size", type=int, default=224)
parser.add_argument("--output_dim", type=int, default=512, help="Dimension of output embedding. Must match the embeddings generated.")
parser.add_argument("--batch_size", type=int, default=64)
parser.add_argument("--device", type=str, default="cuda")
parser.add_argument("--shuffle", type=bool, default=True)
parser.add_argument("--num_workers", type=int, default=8)
parser.add_argument("--num_epochs", type=int, default=50)
parser.add_argument("--pretrained", action="store_true")
parser.add_argument("--lr", type=float, default=3e-4)
parser.add_argument("--momentum", type=float, default=0.)
parser.add_argument("--weight_decay", type=float, default=0.)
parser.add_argument("--optimizer", type=str, default="adam", choices=["adam", "sdg"])
parser.add_argument("--criterion", type=str, default="mse", choices=["mse", "l1", "huber"])
parser.add_argument("--use_asp", action="store_true")
parser.add_argument("--init_checkpoint", type=str, default=None)
parser.add_argument("--use_qat", action="store_true")
args = parser.parse_args()
checkpoint_path = os.path.join(args.output_dir, "checkpoint.pth")
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
args_dict = vars(args)
args_path = os.path.join(args.output_dir, "args.json")
print(f"Running with args {args_dict}")
print(f"Writing args to {args_path}...")
with open(args_path, 'w') as f:
json.dump(args_dict, f, indent=2)
all_image_paths = find_images(args.images_folder)
print(f"Found {len(all_image_paths)} in the folder {args.images_folder}")
image_paths = []
embedding_paths = []
for image_path in all_image_paths:
image_id = get_image_id_from_path(image_path)
embedding_path = get_embedding_path(args.embeddings_folder, image_id)
if os.path.exists(embedding_path):
image_paths.append(image_path)
embedding_paths.append(embedding_path)
print(f"Found embeddings for {len(embedding_paths)} out of {len(all_image_paths)} images.")
if args.criterion == "mse":
criterion = F.mse_loss
elif args.criterion == "l1":
criterion = F.l1_loss
elif args.criterion == "huber":
criterion = F.huber_loss
else:
raise RuntimeError(f"Unsupported criterion {args.criterion}")
if args.use_qat:
from pytorch_quantization import quant_modules
# use QAT monkey-patching
print("Initializing quantization aware training (QAT)")
quant_modules.initialize()
model = timm.create_model(
model_name=args.model_name,
pretrained=args.pretrained,
num_classes=args.output_dim
)
model = model.to(args.device)
# Setup optimizer
if args.optimizer == "adam":
optimizer = torch.optim.Adam(
model.parameters(),
lr=args.lr,
weight_decay=args.weight_decay
)
elif args.optimizer == "sgd":
optimizer = torch.optim.SGD(
model.parameters(),
lr=args.lr,
weight_decay=args.weight_decay,
momentum=args.momentum
)
transform = Compose([
Resize(args.image_size),
CenterCrop(args.image_size),
ToTensor(),
Normalize(IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD)
])
dataset = ImageEmbeddingDataset(
image_paths=image_paths,
embedding_paths=embedding_paths,
transform=transform
)
data_loader = DataLoader(
dataset=dataset,
num_workers=args.num_workers,
shuffle=args.shuffle,
batch_size=args.batch_size
)
if checkpoint_path is not None and os.path.exists(checkpoint_path):
checkpoint = torch.load(checkpoint_path)
model.load_state_dict(checkpoint["model"])
optimizer.load_state_dict(checkpoint["optimizer"])
start_epoch = checkpoint["epoch"] + 1 # pick up on previous epoch
elif args.init_checkpoint is not None and os.path.exists(args.init_checkpoint):
checkpoint = torch.load(args.init_checkpoint)
model.load_state_dict(checkpoint["model"])
optimizer.load_state_dict(checkpoint["optimizer"])
start_epoch = 0 # don't use start checkpoints epoch
else:
start_epoch = 0
writer_path = os.path.join(args.output_dir, "log")
writer = SummaryWriter(writer_path)
model = model.train()
if args.use_asp:
from apex.contrib.sparsity import ASP
ASP.init_model_for_pruning(model, mask_calculator="m4n2_1d", verbosity=2, whitelist=[torch.nn.Linear, torch.nn.Conv2d], allow_recompute_mask=False, allow_permutation=False)
ASP.init_optimizer_for_pruning(optimizer)
ASP.compute_sparse_masks()
print(f"Pruned model for 2:4 sparse weights using ASP")
for epoch in range(start_epoch, args.num_epochs):
epoch_loss = 0.
for image, embedding in tqdm.tqdm(iter(data_loader)):
image = image.to(args.device)
embedding = embedding.to(args.device)
optimizer.zero_grad()
output_embedding = model(image)
loss = criterion(output_embedding, embedding)
loss.backward()
optimizer.step()
epoch_loss += float(loss)
writer.add_scalar(
"loss",
scalar_value=epoch_loss,
global_step=epoch
)
print(f"EPOCH: {epoch} - LOSS: {epoch_loss}")
checkpoint = {
"epoch": epoch,
"model": model.state_dict(),
"optimizer": optimizer.state_dict()
}
torch.save(
checkpoint,
checkpoint_path
)