-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathapp.py
227 lines (192 loc) · 7.3 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import time
import gradio as gr
import torch
from gradio import inputs
from PIL import Image
from torchvision import transforms
from diffusers import AutoencoderKL, DPMSolverMultistepScheduler
from modules.latent_predictor import LatentEdgePredictor
from modules.pipeline import AntiGradientPipeline
start_time = time.time()
scheduler = DPMSolverMultistepScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
num_train_timesteps=1000,
trained_betas=None,
predict_epsilon=True,
thresholding=False,
algorithm_type="dpmsolver++",
solver_type="midpoint",
lower_order_final=True,
)
last_mode = "txt2img"
vae = AutoencoderKL.from_pretrained(
"runwayml/stable-diffusion-v1-5", subfolder="vae", torch_dtype=torch.float16
)
pipe_t2i = AntiGradientPipeline.from_pretrained(
"/root/workspace/storage/models/orangemix",
vae=vae,
torch_dtype=torch.float16,
scheduler=scheduler,
)
pipe = pipe_t2i
# inject
unet = pipe.unet
unet.enable_xformers_memory_efficient_attention()
if torch.cuda.is_available():
pipe = pipe.to("cuda")
device = "GPU 🔥" if torch.cuda.is_available() else "CPU 🥶"
def error_str(error, title="Error"):
return (
f"""#### {title}
{error}"""
if error
else ""
)
transforms = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
]
)
lgp = LatentEdgePredictor(9320, 4, 9)
lgp.load_state_dict(torch.load("/root/workspace/sketch2img/edge_predictor.pt"))
lgp.to(unet.device, dtype=unet.dtype)
pipe.setup_lgp(lgp)
# import numpy as np
# def decode_latents(latents):
# latents = 1 / 0.18215 * latents
# image = vae.decode(latents).sample
# image = (image / 2 + 0.5).clamp(0, 1)
# # we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
# image = image.detach().cpu().permute(0, 2, 3, 1).float().numpy()
# image = image.squeeze(0) * 255
# return image.astype(np.uint8)
def inference(
prompt,
guidance,
steps,
width=512,
height=512,
seed=0,
strength=0.5,
neg_prompt="",
spimg=None,
):
global current_model
generator = torch.Generator("cuda").manual_seed(seed) if seed != 0 else None
global last_mode
global pipe
global current_model_path
global vae
global sketch_encoder
global sat_model
sketchs=None
if spimg is not None:
gsimg = Image.fromarray(spimg)
tensor_img = torch.tile(transforms(gsimg), (3, 1, 1)).unsqueeze(0)
sketchs = vae.encode(tensor_img.to(vae.device, dtype=vae.dtype)).latent_dist.sample() * 0.18215
# opx = Image.fromarray(decode_latents(sketchs))
# opx.save("output_encoded.png")
result = pipe(
prompt,
negative_prompt=neg_prompt,
num_inference_steps=int(steps),
guidance_scale=guidance,
width=width,
height=height,
generator=generator,
sketch_image=sketchs,
)
return result[0], None
css = """.finetuned-diffusion-div div{display:inline-flex;align-items:center;gap:.8rem;font-size:1.75rem}.finetuned-diffusion-div div h1{font-weight:900;margin-bottom:7px}.finetuned-diffusion-div p{margin-bottom:10px;font-size:94%}a{text-decoration:underline}.tabs{margin-top:0;margin-bottom:0}#gallery{min-height:20rem}
"""
with gr.Blocks(css=css) as demo:
gr.HTML(
f"""
<div class="finetuned-diffusion-div">
<div>
<h1>Demo for orangemix</h1>
</div>
<p>Duplicating this space: <a style="display:inline-block" href="https://huggingface.co/spaces/akhaliq/anything-v3.0?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a> </p>
</p>
</div>
"""
)
with gr.Row():
with gr.Column(scale=55):
with gr.Group():
with gr.Row():
prompt = gr.Textbox(
label="Prompt",
show_label=True,
max_lines=2,
placeholder="Enter prompt.",
)
neg_prompt = gr.Textbox(
label="Negative Prompt",
show_label=True,
max_lines=2,
placeholder="Enter negative prompt.",
)
with gr.Row():
generate = gr.Button(value="Generate")
image_out = gr.Image(height=512)
# gallery = gr.Gallery(
# label="Generated images", show_label=False, elem_id="gallery"
# ).style(grid=[1], height="auto")
error_output = gr.Markdown()
with gr.Column(scale=45):
# with gr.Row():
with gr.Tab("Options"):
with gr.Group():
model = gr.Textbox(
interactive=False,
label="Model",
placeholder="Worangemix-Modified",
)
# n_images = gr.Slider(label="Images", value=1, minimum=1, maximum=4, step=1)
with gr.Row():
guidance = gr.Slider(
label="Guidance scale", value=7.5, maximum=15
)
steps = gr.Slider(
label="Steps", value=25, minimum=2, maximum=75, step=1
)
with gr.Row():
width = gr.Slider(
label="Width", value=512, minimum=64, maximum=1024, step=8
)
height = gr.Slider(
label="Height", value=512, minimum=64, maximum=1024, step=8
)
seed = gr.Slider(
0, 2147483647, label="Seed (0 = random)", value=0, step=1
)
with gr.Tab("SketchPad"):
with gr.Group():
sp = gr.Sketchpad(shape=(512, 512), tool="sketch")
strength = gr.Slider(
label="Transformation strength",
minimum=0,
maximum=1,
step=0.01,
value=0.5,
)
inputs = [
prompt,
guidance,
steps,
width,
height,
seed,
strength,
neg_prompt,
sp,
]
outputs = [image_out, error_output]
prompt.submit(inference, inputs=inputs, outputs=outputs)
generate.click(inference, inputs=inputs, outputs=outputs)
print(f"Space built in {time.time() - start_time:.2f} seconds")
demo.launch(debug=True, share=False)