-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy patheval.py
198 lines (150 loc) · 7.18 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import os
import sys
import datetime
import yaml
import torch
import numpy as np
import torch.nn as nn
import torch.optim as optim
import torch.utils.data as Data
from tensorboardX import SummaryWriter
from parse_args import Parse
from models.models_import import create_model_object
from datasets import data_loader
from metrics import Metrics
from checkpoint import load_checkpoint
import pprint
import wandb
def eval(**args):
"""
Evaluate selected model
Args:
seed (Int): Integer indicating set seed for random state
save_dir (String): Top level directory to generate results folder
model (String): Name of selected model
dataset (String): Name of selected dataset
exp (String): Name of experiment
load_type (String): Keyword indicator to evaluate the testing or validation set
pretrained (Int/String): Int/String indicating loading of random, pretrained or saved weights
Return:
None
"""
print("Experimental Setup: ")
pprint.PrettyPrinter(indent=4).pprint(args)
d = datetime.datetime.today()
date = d.strftime('%Y%m%d-%H%M%S')
result_dir = os.path.join(args['save_dir'], args['model'], '_'.join((args['dataset'],args['exp'],date)))
log_dir = os.path.join(result_dir, 'logs')
save_dir = os.path.join(result_dir, 'checkpoints')
run_id = args['exp']
use_wandb = args.get('use_wandb', False)
if not args['debug']:
if use_wandb:
wandb.init(project=args['dataset'], name=args['exp'], config=args, tags=args['tags'])
#Replace result dir with wandb unique id, much easier to find checkpoints
run_id = wandb.run.id
if run_id:
result_dir = os.path.join(args['save_dir'], args['model'], '_'.join((args['dataset'], run_id)))
log_dir = os.path.join(result_dir, 'logs')
save_dir = os.path.join(result_dir, 'checkpoints')
os.makedirs(result_dir, exist_ok=True)
os.makedirs(log_dir, exist_ok=True)
os.makedirs(save_dir, exist_ok=True)
# Save copy of config file
with open(os.path.join(result_dir, 'config.yaml'),'w') as outfile:
yaml.dump(args, outfile, default_flow_style=False)
# Tensorboard Element
writer = SummaryWriter(log_dir)
# Check if GPU is available (CUDA)
num_gpus = args['num_gpus']
device = torch.device("cuda:0" if num_gpus > 0 and torch.cuda.is_available() else "cpu")
print('Using {}'.format(device.type))
# Load Network
model = create_model_object(**args).to(device)
model_obj = model
if device.type == 'cuda' and num_gpus > 1:
device_ids = list(range(num_gpus)) #number of GPUs specified
model = nn.DataParallel(model, device_ids=device_ids)
model_obj = model.module #Model from DataParallel object has to be accessed through module
print('GPUs Device IDs: {}'.format(device_ids))
# Load Data
loader = data_loader(**args, model_obj=model_obj)
if args['load_type'] == 'train_val':
eval_loader = loader['valid']
elif args['load_type'] == 'train':
eval_loader = loader['train']
elif args['load_type'] == 'test':
eval_loader = loader['test']
else:
sys.exit('load_type must be valid or test for eval, exiting')
if isinstance(args['pretrained'], str):
ckpt = load_checkpoint(args['pretrained'])
ckpt_keys = list(ckpt.keys())
if ckpt_keys[0].startswith('module.'): #if checkpoint weights are from DataParallel object
for key in ckpt_keys:
ckpt[key[7:]] = ckpt.pop(key)
model_obj.load_state_dict(ckpt, strict=False)
# Training Setup
params = [p for p in model.parameters() if p.requires_grad]
acc_metric = Metrics(**args, result_dir=result_dir, ndata=len(eval_loader.dataset), logger=wandb if use_wandb else None, run_id=run_id)
acc = 0.0
# Setup Model To Evaluate
model.eval()
with torch.no_grad():
for step, data in enumerate(eval_loader):
x_input = data['data']
annotations = data['annots']
if isinstance(x_input, torch.Tensor):
outputs = model(x_input.to(device))
else:
for i, item in enumerate(x_input):
if isinstance(item, torch.Tensor):
x_input[i] = item.to(device)
outputs = model(*x_input)
if args['save_feat']:
feats = outputs['feat'].cpu().data
gt_key_pts = annotations['key_pts']
bboxes = annotations['bbox']
obj_ids = annotations['obj_ids']
track_ids = annotations['track_ids']
vid_id = annotations['vid_id']
load_type = annotations['load_type'][0]
feat_dir = os.path.join(args['save_feat_dir'], args['model']+'-'+args['exp'], load_type)
os.makedirs(feat_dir, exist_ok=True)
for vid in set(vid_id):
idx = [i for i, item in enumerate(vid_id) if item == vid]
feat = feats[idx]
key_pts = gt_key_pts[idx]
bbox = bboxes[idx]
track = track_ids[idx]
oid = obj_ids[idx]
filename = os.path.join(feat_dir,vid+'.pkl')
if os.path.exists(filename):
vid_data = torch.load(filename)
vid_data['feat'] = torch.cat((vid_data['feat'], feat))
vid_data['gt_key_pts'] = torch.cat((vid_data['gt_key_pts'], key_pts))
vid_data['bbox'] = torch.cat((vid_data['bbox'], bbox))
vid_data['track_id'] = torch.cat((vid_data['track_id'], track))
vid_data['object_ids'] = torch.cat((vid_data['object_ids'], oid))
else:
vid_data = {'feat':feat, 'gt_key_pts':key_pts, 'bbox':bbox, 'track_id':track, 'object_ids':oid}
torch.save(vid_data, filename)
outputs = outputs['outputs']
acc = acc_metric.get_accuracy(outputs, annotations)
if step % 100 == 0:
print('Step: {}/{} | {} acc: {:.4f}'.format(step, len(eval_loader), args['load_type'], acc))
print('Accuracy of the network on the {} set: {:.3f} %\n'.format(args['load_type'], 100.*acc))
if not args['debug']:
if use_wandb:
wandb.log({'val accuracy':100.*acc})
writer.add_scalar(args['dataset']+'/'+args['model']+'/'+args['load_type']+'_accuracy', 100.*acc)
# Close Tensorboard Element
writer.close()
if __name__ == '__main__':
parse = Parse()
args = parse.get_args()
# For reproducibility
torch.backends.cudnn.deterministic = True
torch.manual_seed(args['seed'])
np.random.seed(args['seed'])
eval(**args)