|
1 | 1 | #!/usr/bin/env python
|
2 | 2 | # coding: utf-8
|
3 | 3 |
|
4 |
| -import klarfkit |
| 4 | +import pandas as pd |
| 5 | +import matplotlib.pyplot as plt |
| 6 | +import seaborn as sns |
| 7 | +import numpy as np |
| 8 | +import warnings |
5 | 9 |
|
| 10 | +class WaferMap: |
| 11 | + |
| 12 | + def __init__(self): |
| 13 | + self.sample_size = None |
| 14 | + self.die_pitch = None |
| 15 | + self.die_origin = None |
| 16 | + self.center_location = None |
| 17 | + self.defect_list = pd.DataFrame() |
| 18 | + |
| 19 | + def load_klarf(self, file, name=None): |
| 20 | + |
| 21 | + with open(file) as f: |
| 22 | + data = [i.strip() for i in f.readlines()] |
| 23 | + cols = [] |
| 24 | + defects = [] |
| 25 | + defect_collect = False |
| 26 | + for i in data: |
| 27 | + |
| 28 | + if "SampleSize" in i: |
| 29 | + if self.sample_size and self.sample_size != (float(i[:-1].split()[-1]) * 1000): |
| 30 | + warnings.warn(f"Warning: Files contain inconsistant sample sizes! {self.sample_size/1000}mm vs {(float(i[:-1].split()[-1]))}mm!") |
| 31 | + self.sample_size = float(i[:-1].split()[-1]) * 1000 |
| 32 | + |
| 33 | + elif "DiePitch" in i: |
| 34 | + if self.die_pitch and self.die_pitch != [float(j) for j in i[:-1].split(" ")[1:]]: |
| 35 | + warnings.warn("Warning: Files contain inconsistent die sizes. Recommend setting die_line_alpha to 0 for plotting") |
| 36 | + self.die_pitch = [float(j) for j in i[:-1].split(" ")[1:]] |
| 37 | + |
| 38 | + elif "DieOrigin" in i: |
| 39 | + self.die_origin = [float(j) for j in i[:-1].split(" ")[1:]] |
| 40 | + |
| 41 | + elif "CenterLocation" in i: |
| 42 | + self.center_location = [float(j) for j in i[:-1].split(" ")[1:]] |
| 43 | + |
| 44 | + elif "DefectRecordSpec" in i: |
| 45 | + for j in i[:-1].split()[2::]: |
| 46 | + cols.append(j) |
| 47 | + |
| 48 | + elif "DefectList" in i: |
| 49 | + defect_collect = True |
| 50 | + |
| 51 | + elif "SummarySpec" in i: |
| 52 | + defect_collect = False |
| 53 | + |
| 54 | + elif defect_collect: |
| 55 | + defects.append(i.replace(";", "").split()) |
| 56 | + |
| 57 | + df = pd.DataFrame(defects, columns=cols).astype(float) |
| 58 | + df['_XACTUAL'] = (df['XINDEX'] * self.die_pitch[0]) + df['XREL'] - self.center_location[0] |
| 59 | + df['_YACTUAL'] = (df['YINDEX'] * self.die_pitch[1]) + df['YREL'] - self.center_location[1] |
| 60 | + |
| 61 | + if name: |
| 62 | + df['_KLARFNAME'] = name |
| 63 | + else: |
| 64 | + df['_KLARFNAME'] = file |
| 65 | + |
| 66 | + self.defect_list = pd.concat([self.defect_list, df]).reset_index(drop=True) |
| 67 | + |
| 68 | + def plot_wafer_map(self, color='_KLARFNAME', die_line_alpha=0.2, die_line_color='gray', *args, **kwargs): |
| 69 | + wafer_sin = (np.sin(np.arange(0, 2 * np.pi, 1 / 1000))) * self.sample_size / 2 |
| 70 | + wafer_cos = (np.cos(np.arange(0, 2 * np.pi, 1 / 1000))) * self.sample_size / 2 |
| 71 | + # Plot the wafer circle |
| 72 | + plt.plot(wafer_sin, wafer_cos, color='k', linewidth=0.3) |
| 73 | + |
| 74 | + for i in range(-int(self.sample_size // self.die_pitch[0]) - 10, |
| 75 | + int(self.sample_size // self.die_pitch[0]) + 10): |
| 76 | + |
| 77 | + die_x_lines = -self.center_location[0] + (i * self.die_pitch[0]) |
| 78 | + height_squared = (self.sample_size / 2) ** 2 - die_x_lines ** 2 |
| 79 | + if height_squared > 0: |
| 80 | + height = np.sqrt(height_squared) |
| 81 | + |
| 82 | + plt.vlines(die_x_lines, |
| 83 | + -height, |
| 84 | + height, |
| 85 | + color=die_line_color, |
| 86 | + alpha=die_line_alpha) |
| 87 | + |
| 88 | + for i in range(-int(self.sample_size // self.die_pitch[1]) - 10, |
| 89 | + int(self.sample_size // self.die_pitch[1]) + 10): |
| 90 | + |
| 91 | + die_y_lines = -self.center_location[1] + (i * self.die_pitch[1]) |
| 92 | + width_squared = (self.sample_size / 2) ** 2 - die_y_lines ** 2 |
| 93 | + if width_squared > 0: |
| 94 | + width = np.sqrt(width_squared) |
| 95 | + |
| 96 | + plt.hlines(die_y_lines, |
| 97 | + -width, |
| 98 | + width, |
| 99 | + color=die_line_color, |
| 100 | + alpha=die_line_alpha) |
| 101 | + |
| 102 | + if color in self.defect_list.columns: |
| 103 | + sns.scatterplot(x=self.defect_list['_XACTUAL'], |
| 104 | + y=self.defect_list['_YACTUAL'], |
| 105 | + hue=self.defect_list[color], |
| 106 | + *args, **kwargs) |
| 107 | + |
| 108 | + plt.legend(loc='lower left') |
| 109 | + else: |
| 110 | + sns.scatterplot(x=self.defect_list['_XACTUAL'], |
| 111 | + y=self.defect_list['_YACTUAL'], |
| 112 | + color=color, |
| 113 | + *args, **kwargs) |
| 114 | + |
| 115 | + plt.xlim(-self.sample_size / 2 - 2000, self.sample_size / 2 + 2000) |
| 116 | + plt.ylim(-self.sample_size / 2 - 2000, self.sample_size / 2 + 2000) |
0 commit comments