
Theming

Makie allows you to change almost every visual aspect of your
plots via attributes. You can set attributes whenever you create
an object, or you define a general style that is then used as
the default by all following objects.

There are three functions you can use for that purpose:

set_theme!
update_theme!
with_theme

set_theme!

You can call set_theme!(theme; kwargs...) to change the
current default theme to theme and override or add attributes
given by kwargs . You can also reset your changes by calling
set_theme!() without arguments.

Let's create a plot with the default theme:

using CairoMakie

function example_plot()
 f = Figure()

for i in 1:2, j in 1:2
 lines(f[i, j], cumsum(randn(50)))

end
 Label(f[0, :], "A simple example plot")
 Label(f[3, :], L"Random walks $x(t_n)$")
 f
end

example_plot()

Theming http://localhost:8000/

1 of 12 24/08/2023, 12:59

http://localhost:8000/#theming
http://localhost:8000/#theming
http://localhost:8000/#set_theme
http://localhost:8000/#set_theme

Now we define a theme which changes the default fontsize,
activate it, and plot.

fontsize_theme = Theme(fontsize = 10)
set_theme!(fontsize_theme)

example_plot()

This theme will be active until we call set_theme!() .

set_theme!()

Theming http://localhost:8000/

2 of 12 24/08/2023, 12:59

merge

Themes often only affect part of the plot attributes. Therefore it
is possible to combine themes to get their respective effects
together.

For example, you can combine the dark theme with the LaTeX
fonts theme to have both the dark colors and uniform fonts.

dark_latexfonts = merge(theme_dark(), theme_latexfonts())
set_theme!(dark_latexfonts)
example_plot()

// Image matching '/assets/index
/code/example_7337788990895075742.png' not found. //

update_theme!

If you have activated a theme already and want to update it
partially, without removing the attributes not in the new theme,
you can use update_theme! .

For example, you can decide to change the text size after
activating the dark and latex theme in the previous section.

update_theme!(fontsize=30)
example_plot()

Theming http://localhost:8000/

3 of 12 24/08/2023, 12:59

http://localhost:8000/#merge
http://localhost:8000/#merge
http://localhost:8000/#update_theme
http://localhost:8000/#update_theme

with_theme

Because it can be tedious to remember to switch themes off
which you need only temporarily, there's the function
with_theme(f, theme) which handles the resetting for you
automatically, even if you encounter an error while running f .

with_theme(fontsize_theme) do
 example_plot()
end

You can also pass additional keywords to add or override

Theming http://localhost:8000/

4 of 12 24/08/2023, 12:59

http://localhost:8000/#with_theme
http://localhost:8000/#with_theme

attributes in your theme:

with_theme(fontsize_theme, fontsize = 25) do
 example_plot()
end

Theming plot objects

You can theme plot objects by using their uppercase type
names as a key in your theme.

lines_theme = Theme(
 Lines = (
 linewidth = 4,
 linestyle = :dash,
)
)

with_theme(example_plot, lines_theme)

Theming http://localhost:8000/

5 of 12 24/08/2023, 12:59

http://localhost:8000/#theming_plot_objects
http://localhost:8000/#theming_plot_objects

Theming block objects

Every Block such as Axis , Legend , Colorbar , etc. can be
themed by using its type name as a key in your theme.

Here is how you could define a simple ggplot-like style for your
axes:

ggplot_theme = Theme(
 Axis = (
 backgroundcolor = :gray90,
 leftspinevisible = false,
 rightspinevisible = false,
 bottomspinevisible = false,
 topspinevisible = false,
 xgridcolor = :white,
 ygridcolor = :white,
)
)

with_theme(example_plot, ggplot_theme)

Theming http://localhost:8000/

6 of 12 24/08/2023, 12:59

http://localhost:8000/#theming_block_objects
http://localhost:8000/#theming_block_objects

Cycles

Makie supports a variety of options for cycling plot attributes
automatically. For a plot object to use cycling, either its default
theme or the currently active theme must have the cycle
attribute set.

There are multiple ways to specify this attribute:

You can either make a list of symbols
cycle = [:color, :marker]
or map specific plot attributes to palette attributes
cycle = [:linecolor => :color, :marker]
you can also map multiple attributes that should receive
the same cycle attribute
cycle = [[:linecolor, :markercolor] => :color, :marker]
nothing disables cycling
cycle = nothing # equivalent to cycle = []

Notice that cycles must be given as attributes to a plot object,
not the top-level theme (because different plot objects can
cycle different attributes, e.g., a density plot cannot cycle
markers). This is exemplified in the following code blocks.

with_theme(
 Theme(
 palette = (color = [:red, :blue], marker = [:circle, :xcross]),

Theming http://localhost:8000/

7 of 12 24/08/2023, 12:59

http://localhost:8000/#cycles
http://localhost:8000/#cycles

 Scatter = (cycle = [:color, :marker],)
)) do
 scatter(fill(1, 10))
 scatter!(fill(2, 10))
 scatter!(fill(3, 10))
 scatter!(fill(4, 10))
 scatter!(fill(5, 10))
 current_figure()
end

Covarying cycles

You can also construct a Cycle object directly, which
additionally allows to set the covary keyword, that defaults to
false . A cycler with covary = true cycles all attributes
together, instead of cycling through all values of the first, then
the second, etc.

palettes: color = [:red, :blue, :green] marker = [:circle, :rect, :utriangle

cycle = [:color, :marker]
1: :red, :circle
2: :blue, :circle
3: :green, :circle
4: :red, :rect
...

cycle = Cycle([:color, :marker], covary = true)
1: :red, :circle
2: :blue, :rect

Theming http://localhost:8000/

8 of 12 24/08/2023, 12:59

http://localhost:8000/#covarying_cycles
http://localhost:8000/#covarying_cycles

3: :green, :utriangle
4: :red, :dtriangle
...

For example

with_theme(
 Theme(
 palette = (color = [:red, :blue], linestyle = [:dash, :dot]),
 Lines = (cycle = Cycle([:color, :linestyle], covary =
)) do
 lines(fill(5, 10))
 lines!(fill(4, 10))
 lines!(fill(3, 10))
 lines!(fill(2, 10))
 lines!(fill(1, 10))
 current_figure()
end

Manual cycling using Cycled

If you want to give a plot's attribute a specific value from the
respective cycler, you can use the Cycled object. The index i
passed to Cycled is used directly to look up a value in the
cycler that belongs to the attribute, and errors if no such cycler
is defined. For example, to access the third color in a cycler,
instead of plotting three plots to advance the cycler, you can
use color = Cycled(3) .

Theming http://localhost:8000/

9 of 12 24/08/2023, 12:59

http://localhost:8000/#manual_cycling_using_cycled
http://localhost:8000/#manual_cycling_using_cycled
http://localhost:8000/#manual_cycling_using_cycled
http://localhost:8000/#manual_cycling_using_cycled

The cycler's internal counter is not advanced when using
Cycled for any attribute, and only attributes with Cycled access
the cycled values, all other usually cycled attributes fall back to
their non-cycled defaults.

using CairoMakie

f = Figure()

Axis(f[1, 1])

the normal cycle
lines!(0..10, x -> sin(x) - 1)
lines!(0..10, x -> sin(x) - 2)
lines!(0..10, x -> sin(x) - 3)

manually specified colors
lines!(0..10, x -> sin(x) - 5, color = Cycled(3))
lines!(0..10, x -> sin(x) - 6, color = Cycled(2))
lines!(0..10, x -> sin(x) - 7, color = Cycled(1))

f

Palettes

The attributes specified in the cycle are looked up in the axis'
palette. A single :color is both plot attribute as well as palette
attribute, while :color => :patchcolor means that plot.color

Theming http://localhost:8000/

10 of 12 24/08/2023, 12:59

http://localhost:8000/#palettes
http://localhost:8000/#palettes

should be set to palette.patchcolor . Here's an example that
shows how density plots react to different palette options:

using CairoMakie

f = Figure(resolution = (800, 800))

Axis(f[1, 1], title = "Default cycle palette")

for i in 1:6
 density!(randn(50) .+ 2i)
end

Axis(f[2, 1],
 title = "Custom cycle palette",
 palette = (patchcolor = [:red, :green, :blue, :yellow, :orange, :pink],))

for i in 1:6
 density!(randn(50) .+ 2i)
end

set_theme!(Density = (cycle = [],))

Axis(f[3, 1], title = "No cycle")

for i in 1:6
 density!(randn(50) .+ 2i)
end

f

Theming http://localhost:8000/

11 of 12 24/08/2023, 12:59

You can also theme global palettes via set_theme!(palette =
(color = my_colors, marker = my_markers)) for example.

Special attributes

You can use the keys rowgap and colgap to change the default
grid layout gaps.

CC BY-SA 4.0 . Last modified: August 24, 2023. Website built with Franklin.jl

and the Julia programming language.

Theming http://localhost:8000/

12 of 12 24/08/2023, 12:59

http://localhost:8000/#special_attributes
http://localhost:8000/#special_attributes
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://github.com/tlienart/Franklin.jl
https://github.com/tlienart/Franklin.jl
https://julialang.org/
https://julialang.org/

