-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patht.py
151 lines (123 loc) · 5.42 KB
/
t.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import os
import torch
from torch import nn
from torch.autograd import Variable
from torch.utils.data import DataLoader, Dataset
from torchvision import transforms
from torchvision.utils import save_image
from scipy.stats.stats import pearsonr
from Progbar import Progbar
import pandas as pd
import numpy as np
if not os.path.exists('./mlp_img'):
os.mkdir('./mlp_img')
if not os.path.exists('./filters'):
os.mkdir('./filters')
device = torch.device("cuda:0" if torch.cuda.is_available() else 'cpu')
def to_img(x):
x = x.view(x.size(0), 1, 100, 50)
return x
num_epochs = 20
batch_size = 1
learning_rate = 1e-3
def add_noise(img):
noise = torch.randn(img.size()) * 0.2
noisy_img = img + noise
return noisy_img
def plot_sample_img(img, name):
img = img.view(1, 100, 50)
save_image(img, './sample_{}.png'.format(name))
def min_max_normalization(tensor, min_value, max_value):
min_tensor = tensor.min()
tensor = (tensor - min_tensor)
max_tensor = tensor.max()
tensor = tensor / max_tensor
tensor = tensor * (max_value - min_value) + min_value
return tensor
def tensor_round(tensor):
return torch.round(tensor.float())
img_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Lambda(lambda tensor:min_max_normalization(tensor, 0, 1))
# transforms.Lambda(lambda tensor:tensor_round(tensor))
])
class SimulatedDataset(Dataset):
'''
每一个 Item 是 (5000, ) 的向量
'''
def __init__(self, simulated_csv_data_path, true_csv_data_path, transform=None):
self.simulated_csv_data = pd.read_csv(simulated_csv_data_path)
self.true_csv_data_path = pd.read_csv(true_csv_data_path)
self.transform = transform
def __len__(self):
return len(self.simulated_csv_data.columns) - 1
def __getitem__(self, index):
a_column_of_simulated_data = self.simulated_csv_data.iloc[:, index+1]
a_column_of_true_data = self.true_csv_data_path.iloc[:, index+1]
a_column_of_simulated_data = np.asarray(a_column_of_simulated_data).reshape(1,-1)
a_column_of_true_data = np.asarray(a_column_of_true_data).reshape(1,-1)
if self.transform is not None:
a_column_of_simulated_data = self.transform(a_column_of_simulated_data)
a_column_of_true_data = self.transform(a_column_of_true_data)
simulated_true_pack = (a_column_of_simulated_data, a_column_of_true_data)
return simulated_true_pack
dataset = SimulatedDataset(simulated_csv_data_path="./data/counts_simulated_dataset1_dropout0.05.csv",
true_csv_data_path="./data/true_counts_simulated_dataset1_dropout0.05.csv",
transform=img_transform)
# dataset = MNIST('./data', transform=img_transform, download=True)
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True, num_workers=3)
class AutoEncoder(nn.Module):
def __init__(self):
super(AutoEncoder, self).__init__()
self.encoder = nn.Sequential(
nn.Linear(5000, 512),
nn.ReLU(True),
nn.Linear(512, 128),
nn.ReLU(True))
self.decoder = nn.Sequential(
nn.Linear(128, 512),
nn.ReLU(True),
nn.Linear(512, 5000),
nn.Sigmoid())
def forward(self, x):
x = self.encoder(x)
x = self.decoder(x)
return x
model = AutoEncoder().to(device)
criterion = nn.BCELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate, weight_decay=1e-5)
#if os.path.exists('./sim_autoencoder.pth'):
#model.load_state_dict(torch.load('./sim_autoencoder.pth'))
for epoch in range(num_epochs):
prog = Progbar(len(dataloader))
for i, data in enumerate(dataloader):
(noisy_data, true_data) = data
noisy_data = Variable(noisy_data).float().to(device)
true_data = Variable(true_data).float().to(device)
# ===================forward=====================
# print(true_data.size())
output = model(noisy_data)
loss = criterion(output, true_data)
MSE_loss = nn.MSELoss()(output, true_data)
np1 = output.cpu().detach().numpy().reshape(-1)
np2 = true_data.cpu().detach().numpy().reshape(-1)
PCC, p_value = pearsonr(np1, np2)
# ===================backward====================
optimizer.zero_grad()
loss.backward()
optimizer.step()
# =====================log=======================
prog.update(i + 1, [("loss", loss.item()), ("MSE_loss", MSE_loss.data), ("PCC", PCC), ("p-value", p_value)])
# ===================log========================
print('epoch [{}/{}], loss:{:.4f}, MSE_loss:{:.4f}, PCC:{:.4f}, p-value:{:.4f}'
.format(epoch + 1, num_epochs, loss.data, MSE_loss.data, PCC, p_value))
if epoch % 10 == 0:
x = to_img(true_data.cpu().data)
x_hat = to_img(output.cpu().data)
x_noisy = to_img(noisy_data.cpu().data)
weights = to_img(model.encoder[0].weight.cpu().data)
save_image(x, './mlp_img/x_{}.png'.format(epoch))
save_image(x_hat, './mlp_img/x_hat_{}.png'.format(epoch))
save_image(x_noisy, './mlp_img/x_noisy_{}.png'.format(epoch))
save_image(weights, './filters/epoch_{}.png'.format(epoch))
torch.save(model.state_dict(), './512BCE_sim_autoencoder.pth')