-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathtwo_point.py
456 lines (388 loc) · 18.3 KB
/
two_point.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
"""Two point statistic support.
"""
from __future__ import annotations
from typing import Dict, Tuple, Optional, final, Union
import copy
import functools
import warnings
import numpy as np
import numpy.typing as npt
import sacc.windows
import scipy.interpolate
import pyccl
import pyccl.nl_pt
from ....modeling_tools import ModelingTools
from .statistic import Statistic, DataVector, TheoryVector
from .source.source import Source, Tracer
from ....parameters import RequiredParameters, DerivedParameterCollection
# only supported types are here, anything else will throw
# a value error
SACC_DATA_TYPE_TO_CCL_KIND = {
"galaxy_density_cl": "cl",
"galaxy_density_xi": "NN",
"galaxy_shearDensity_cl_e": "cl",
"galaxy_shearDensity_xi_t": "NG",
"galaxy_shear_cl_ee": "cl",
"galaxy_shear_xi_minus": "GG-",
"galaxy_shear_xi_plus": "GG+",
"cmbGalaxy_convergenceDensity_xi": "NN",
"cmbGalaxy_convergenceShear_xi_t": "NG",
}
ELL_FOR_XI_DEFAULTS = {"minimum": 2, "midpoint": 50, "maximum": 6e4, "n_log": 200}
def _ell_for_xi(*, minimum, midpoint, maximum, n_log) -> npt.NDArray[np.float64]:
"""Build an array of ells to sample the power spectrum for real-space
predictions.
The result will contain each integral value from min to mid.
Starting from mid, and going up to max, there will be n_log
logarithmically spaced values. All values are rounded to the nearest
integer.
"""
lower_range = np.linspace(minimum, midpoint - 1, midpoint - minimum)
upper_range = np.logspace(np.log10(midpoint), np.log10(maximum), n_log)
concatenated = np.concatenate((lower_range, upper_range))
# Round the results to the nearest integer values.
# N.B. the dtype of the result is np.dtype[float64]
return np.around(concatenated)
def _generate_ell_or_theta(*, minimum, maximum, n, binning="log"):
if binning == "log":
edges = np.logspace(np.log10(minimum), np.log10(maximum), n + 1)
return np.sqrt(edges[1:] * edges[:-1])
edges = np.linspace(minimum, maximum, n + 1)
return (edges[1:] + edges[:-1]) / 2.0
@functools.lru_cache(maxsize=128)
def _cached_angular_cl(cosmo, tracers, ells, p_of_k_a=None):
return pyccl.angular_cl(
cosmo, tracers[0], tracers[1], np.array(ells), p_of_k_a=p_of_k_a
)
def make_log_interpolator(x, y):
"""Return a function object that does 1D spline interpolation.
If all the y values are greater than 0, the function
interpolates log(y) as a function of log(x).
Otherwise, the function interpolates y as a function of log(x).
The resulting interpolater will not extrapolate; if called with
an out-of-range argument it will raise a ValueError.
"""
# TODO: There is no code in Firecrown, neither test nor example, that uses
# this in any way.
if np.all(y > 0):
# use log-log interpolation
intp = scipy.interpolate.InterpolatedUnivariateSpline(
np.log(x), np.log(y), ext=2
)
return lambda x_, intp=intp: np.exp(intp(np.log(x_)))
# only use log for x
intp = scipy.interpolate.InterpolatedUnivariateSpline(np.log(x), y, ext=2)
return lambda x_, intp=intp: intp(np.log(x_))
class TwoPoint(Statistic):
"""A two-point statistic (e.g., shear correlation function, galaxy-shear
correlation function, etc.).
Parameters
----------
sacc_data_type : str
The kind of two-point statistic. This must be a valid SACC data type that
maps to one of the CCL correlation function kinds or a power spectra.
Possible options are
- galaxy_density_cl : maps to 'cl' (a CCL angular power spectrum)
- galaxy_density_xi : maps to 'gg' (a CCL angular position corr. function)
- galaxy_shearDensity_cl_e : maps to 'cl' (a CCL angular power spectrum)
- galaxy_shearDensity_xi_t : maps to 'gl' (a CCL angular cross-correlation
between position and shear)
- galaxy_shear_cl_ee : maps to 'cl' (a CCL angular power spectrum)
- galaxy_shear_xi_minus : maps to 'l-' (a CCL angular shear corr.
function xi-)
- galaxy_shear_xi_plus : maps to 'l+' (a CCL angular shear corr.
function xi-)
- cmbGalaxy_convergenceDensity_xi : maps to 'gg' (a CCL angular position
corr. function)
- cmbGalaxy_convergenceShear_xi_t : maps to 'gl' (a CCL angular cross-
correlation between position and shear)
source0 : Source
The first sources needed to compute this statistic.
source1 : Source
The second sources needed to compute this statistic.
ell_or_theta : dict, optional
A dictionary of options for generating the ell or theta values at which
to compute the statistics. This option can be used to have firecrown
generate data without the corresponding 2pt data in the input SACC file.
The options are:
- min : float - The start of the binning.
- max : float - The end of the binning.
- n : int - The number of bins. Note that the edges of the bins start
at `min` and end at `max`. The actual bin locations will be at the
(possibly geometric) midpoint of the bin.
- binning : str, optional - Pass 'log' to get logarithmic spaced bins and 'lin'
to get linearly spaced bins. Default is 'log'.
ell_or_theta_min : float, optional
The minimum ell or theta value to keep. This minimum is applied after
the ell or theta values are read and/or generated.
ell_or_theta_max : float, optional
The maximum ell or theta value to keep. This maximum is applied after
the ell or theta values are read and/or generated.
ell_for_xi : dict, optional
A dictionary of options for making the ell values at which to compute
Cls for use in real-space integrations. The possible keys are:
- min : int, optional - The minimum angular wavenumber to use for
real-space integrations. Default is 2.
- mid : int, optional - The midpoint angular wavenumber to use for
real-space integrations. The angular wavenumber samples are linearly
spaced at integers between `min` and `mid`. Default is 50.
- max : float, optional - The maximum angular wavenumber to use for
real-space integrations. The angular wavenumber samples are
logarithmically spaced between `mid` and `max`. Default is 6e4.
- n_log : int, optional - The number of logarithmically spaced angular
wavenumber samples between `mid` and `max`. Default is 200.
Attributes
----------
ccl_kind : str
The CCL correlation function kind or 'cl' for power spectra corresponding
to the SACC data type.
sacc_tracers : 2-tuple of str
A tuple of the SACC tracer names for this 2pt statistic. Set after a
call to read.
ell_or_theta_ : npt.NDArray[np.float64]
The final array of ell/theta values for the statistic. Set after
`compute` is called.
measured_statistic_ : npt.NDArray[np.float64]
The measured value for the statistic.
predicted_statistic_ : npt.NDArray[np.float64]
The final prediction for the statistic. Set after `compute` is called.
"""
def __init__(
self,
sacc_data_type,
source0: Source,
source1: Source,
ell_for_xi=None,
ell_or_theta=None,
ell_or_theta_min=None,
ell_or_theta_max=None,
):
super().__init__()
assert isinstance(source0, Source)
assert isinstance(source1, Source)
self.sacc_data_type = sacc_data_type
self.source0 = source0
self.source1 = source1
self.ell_for_xi = copy.deepcopy(ELL_FOR_XI_DEFAULTS)
if ell_for_xi is not None:
self.ell_for_xi.update(ell_for_xi)
# What is the difference between the following 3 instance variables?
# ell_or_theta
# _ell_or_theta
# ell_or_theta_
self.ell_or_theta = ell_or_theta
self.ell_or_theta_min = ell_or_theta_min
self.ell_or_theta_max = ell_or_theta_max
self.theory_window_function: Optional[sacc.windows.BandpowerWindow] = None
self.data_vector: Optional[DataVector] = None
self.theory_vector: Optional[TheoryVector] = None
self._ell_or_theta: Optional[npt.NDArray[np.float64]] = None
self.predicted_statistic_: Optional[TheoryVector] = None
self.measured_statistic_: Optional[DataVector] = None
self.ell_or_theta_: Optional[npt.NDArray[np.float64]] = None
self.sacc_tracers: Tuple[str, str]
self.ells: Optional[npt.NDArray[np.float64]] = None
self.cells: Dict[Union[Tuple[str, str], str], npt.NDArray[np.float64]] = {}
if self.sacc_data_type in SACC_DATA_TYPE_TO_CCL_KIND:
self.ccl_kind = SACC_DATA_TYPE_TO_CCL_KIND[self.sacc_data_type]
else:
raise ValueError(
f"The SACC data type {sacc_data_type}'%s' is not " f"supported!"
)
@final
def _reset(self) -> None:
"""Prepared to be called again for a new cosmology."""
self.source0.reset()
self.source1.reset()
# TODO: Why is self.predicted_statistic_ not re-set to None here?
# If we do that, then the CosmoSIS module fails -- because this data
# is accessed from that code.
@final
def _required_parameters(self) -> RequiredParameters:
return self.source0.required_parameters() + self.source1.required_parameters()
@final
def _get_derived_parameters(self) -> DerivedParameterCollection:
derived_parameters = DerivedParameterCollection([])
derived_parameters = derived_parameters + self.source0.get_derived_parameters()
derived_parameters = derived_parameters + self.source1.get_derived_parameters()
return derived_parameters
def read(self, sacc_data: sacc.Sacc) -> None:
"""Read the data for this statistic from the SACC file.
:param sacc_data: The data in the sacc format.
"""
self.source0.read(sacc_data)
if self.source0 is not self.source1:
self.source1.read(sacc_data)
assert self.source0.sacc_tracer is not None
assert self.source1.sacc_tracer is not None
tracers = (self.source0.sacc_tracer, self.source1.sacc_tracer)
if self.ccl_kind == "cl":
_ell_or_theta, _stat = sacc_data.get_ell_cl(
self.sacc_data_type, *tracers, return_cov=False
)
else:
_ell_or_theta, _stat = sacc_data.get_theta_xi(
self.sacc_data_type, *tracers, return_cov=False
)
if self.ell_or_theta is None and (len(_ell_or_theta) == 0 or len(_stat) == 0):
raise RuntimeError(
f"Tracers '{tracers}' for data type '{self.sacc_data_type}' "
f"have no 2pt data in the SACC file and no input ell or "
f"theta values were given!"
)
if self.ell_or_theta is not None and len(_ell_or_theta) > 0 and len(_stat) > 0:
warnings.warn(
f"Tracers '{tracers}' have 2pt data and you have specified "
"`ell_or_theta` in the configuration. `ell_or_theta` is being ignored!",
stacklevel=2,
)
# at this point we default to the values in the sacc file
if len(_ell_or_theta) == 0 or len(_stat) == 0:
_ell_or_theta = _generate_ell_or_theta(**self.ell_or_theta)
_stat = np.zeros_like(_ell_or_theta)
else:
self.sacc_indices = np.atleast_1d(
sacc_data.indices(self.sacc_data_type, tracers)
)
if self.ell_or_theta_min is not None:
locations = np.where(_ell_or_theta >= self.ell_or_theta_min)
_ell_or_theta = _ell_or_theta[locations]
_stat = _stat[locations]
if self.sacc_indices is not None:
self.sacc_indices = self.sacc_indices[locations]
if self.ell_or_theta_max is not None:
locations = np.where(_ell_or_theta <= self.ell_or_theta_max)
_ell_or_theta = _ell_or_theta[locations]
_stat = _stat[locations]
if self.sacc_indices is not None:
self.sacc_indices = self.sacc_indices[locations]
self.theory_window_function = sacc_data.get_bandpower_windows(self.sacc_indices)
if self.theory_window_function is not None:
_ell_or_theta = self.calculate_ell_or_theta()
# I don't think we need these copies, but being safe here.
self._ell_or_theta = _ell_or_theta.copy()
self.data_vector = DataVector.create(_stat)
self.measured_statistic_ = self.data_vector
self.sacc_tracers = tracers
def calculate_ell_or_theta(self):
"""See _ell_for_xi.
This method mixes together:
1. the default parameters in ELL_FOR_XI_DEFAULTS
2. the first and last values in self.theory_window_function.values
and then calls _ell_for_xi with those arguments, returning whatever it
returns.
It is an error to call this function if self.theory_window_function has
not been set. That is done in `read`, but might result in the value
being re-set to None.:w
"""
assert self.theory_window_function is not None
ell_config = {
**ELL_FOR_XI_DEFAULTS,
"maximum": self.theory_window_function.values[-1],
}
ell_config["minimum"] = max(
ell_config["minimum"], self.theory_window_function.values[0]
)
return _ell_for_xi(**ell_config)
def get_data_vector(self) -> DataVector:
"""Return this statistic's data vector."""
assert self.data_vector is not None
return self.data_vector
def compute_theory_vector(self, tools: ModelingTools) -> TheoryVector:
"""Compute a two-point statistic from sources."""
assert self._ell_or_theta is not None
self.ell_or_theta_ = self._ell_or_theta.copy()
tracers0 = self.source0.get_tracers(tools)
tracers1 = self.source1.get_tracers(tools)
scale0 = self.source0.get_scale()
scale1 = self.source1.get_scale()
if self.ccl_kind == "cl":
self.ells = self.ell_or_theta_
else:
self.ells = _ell_for_xi(**self.ell_for_xi)
# TODO: we should not be adding a new instance variable outside of
# __init__. Why is `self.cells` an instance variable rather than a
# local variable? It is used in at least two of the example codes:
# both the PT and the TATT examples in des_y1_3x2pt access this data
# member to print out results when the likelihood is "run directly"
# by calling `run_likelihood`.
self.cells = {}
# Loop over the tracers and compute all possible combinations
# of them
for tracer0 in tracers0:
for tracer1 in tracers1:
pk_name = f"{tracer0.field}:{tracer1.field}"
if (tracer0.tracer_name, tracer1.tracer_name) in self.cells:
# Already computed this combination, skipping
continue
pk = self.calculate_pk(pk_name, tools, tracer0, tracer1)
self.cells[(tracer0.tracer_name, tracer1.tracer_name)] = (
_cached_angular_cl(
tools.get_ccl_cosmology(),
(tracer0.ccl_tracer, tracer1.ccl_tracer),
tuple(self.ells.tolist()),
p_of_k_a=pk,
)
* scale0
* scale1
)
# Add up all the contributions to the cells
self.cells["total"] = np.array(sum(self.cells.values()))
theory_vector = self.cells["total"]
if not self.ccl_kind == "cl":
theory_vector = pyccl.correlation(
tools.get_ccl_cosmology(),
ell=self.ells,
C_ell=theory_vector,
theta=self.ell_or_theta_ / 60,
type=self.ccl_kind,
)
if self.theory_window_function is not None:
# TODO: There is no code in Firecrown, neither test nor example,
# that exercises a theory window function in any way.
theory_interpolator = make_log_interpolator(
self.ell_or_theta_, theory_vector
)
ell = self.theory_window_function.values
# Deal with ell=0 and ell=1
theory_vector_interpolated = np.zeros(ell.size)
theory_vector_interpolated[2:] = theory_interpolator(ell[2:])
theory_vector = np.einsum(
"lb, l -> b",
self.theory_window_function.weight,
theory_vector_interpolated,
)
self.ell_or_theta_ = np.einsum(
"lb, l -> b", self.theory_window_function.weight, ell
)
self.predicted_statistic_ = TheoryVector.create(theory_vector)
assert self.data_vector is not None
return TheoryVector.create(theory_vector)
def calculate_pk(
self, pk_name: str, tools: ModelingTools, tracer0: Tracer, tracer1: Tracer
):
"""Return the power spectrum named by pk_name."""
if tools.has_pk(pk_name):
# Use existing power spectrum
pk = tools.get_pk(pk_name)
elif tracer0.has_pt or tracer1.has_pt:
if not tracer0.has_pt and tracer1.has_pt:
# Mixture of PT and non-PT tracers
# Create a dummy matter PT tracer for the non-PT part
matter_pt_tracer = pyccl.nl_pt.PTMatterTracer()
if not tracer0.has_pt:
tracer0.pt_tracer = matter_pt_tracer
else:
tracer1.pt_tracer = matter_pt_tracer
# Compute perturbation power spectrum
pt_calculator = tools.get_pt_calculator()
pk = pt_calculator.get_biased_pk2d(
tracer1=tracer0.pt_tracer,
tracer2=tracer1.pt_tracer,
)
elif tracer0.has_hm or tracer1.has_hm:
# Compute halo model power spectrum
raise NotImplementedError("Halo model power spectra not supported yet")
else:
raise ValueError(f"No power spectrum for {pk_name} can be found.")
return pk