-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathdes_y1_cosmic_shear_TATT.py
225 lines (182 loc) · 7.07 KB
/
des_y1_cosmic_shear_TATT.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
"""Example of a Firecrown likelihood using the DES Y1 cosmic shear data TATT."""
import os
from typing import Tuple
import sacc
import pyccl as ccl
import pyccl.nl_pt
import firecrown.likelihood.gauss_family.statistic.source.weak_lensing as wl
from firecrown.likelihood.gauss_family.statistic.two_point import TwoPoint
from firecrown.likelihood.gauss_family.gaussian import ConstGaussian
from firecrown.parameters import ParamsMap
from firecrown.modeling_tools import ModelingTools
from firecrown.likelihood.likelihood import Likelihood
saccfile = os.path.expanduser(
os.path.expandvars(
"${FIRECROWN_DIR}/examples/des_y1_3x2pt/des_y1_3x2pt_sacc_data.fits"
)
)
def build_likelihood(_) -> Tuple[Likelihood, ModelingTools]:
"""Build the likelihood for the DES Y1 cosmic shear data TATT."""
# Load sacc file
sacc_data = sacc.Sacc.load_fits(saccfile)
# Define sources
n_source = 1
sources = {}
# Define the intrinsic alignment systematic. This will be added to the
# lensing sources later
ia_systematic = wl.TattAlignmentSystematic()
for i in range(n_source):
# Define the photo-z shift systematic.
pzshift = wl.PhotoZShift(sacc_tracer=f"src{i}")
# Create the weak lensing source, specifying the name of the tracer in the
# sacc file and a list of systematics
sources[f"src{i}"] = wl.WeakLensing(
sacc_tracer=f"src{i}", systematics=[pzshift, ia_systematic]
)
# Define the statistics we like to include in the likelihood
stats = {}
for stat, sacc_stat in [
("xip", "galaxy_shear_xi_plus"),
("xim", "galaxy_shear_xi_minus"),
]:
for i in range(n_source):
for j in range(i, n_source):
# Define two-point statistics, given two sources (from above) and
# the type of statistic.
stats[f"{stat}_src{i}_src{j}"] = TwoPoint(
source0=sources[f"src{i}"],
source1=sources[f"src{j}"],
sacc_data_type=sacc_stat,
)
# Create the likelihood from the statistics
pt_calculator = pyccl.nl_pt.EulerianPTCalculator(
with_NC=False,
with_IA=True,
# with_dd=True,
log10k_min=-4,
log10k_max=2,
nk_per_decade=20,
)
modeling_tools = ModelingTools(pt_calculator=pt_calculator)
likelihood = ConstGaussian(statistics=list(stats.values()))
# Read the two-point data from the sacc file
likelihood.read(sacc_data)
# To allow this likelihood to be used in cobaya or cosmosis, define a
# an object called "likelihood" must be defined
print(
"Using parameters:", list(likelihood.required_parameters().get_params_names())
)
return likelihood, modeling_tools
# We can also run the likelihood directly
def run_likelihood() -> None:
"""Run the likelihood."""
import numpy as np # pylint: disable-msg=import-outside-toplevel
import matplotlib.pyplot as plt # pylint: disable-msg=import-outside-toplevel
like_and_tools = build_likelihood(None)
likelihood: Likelihood = like_and_tools[0]
tools: ModelingTools = like_and_tools[1]
# Load sacc file
sacc_data = sacc.Sacc.load_fits(saccfile)
src0_tracer = sacc_data.get_tracer("src0")
z, nz = src0_tracer.z, src0_tracer.nz
# Define a ccl.Cosmology object using default parameters
ccl_cosmo = ccl.CosmologyVanillaLCDM()
ccl_cosmo.compute_nonlin_power()
# Bare CCL setup
a_1 = 1.0
a_2 = 0.5
a_d = 0.5
c_1, c_d, c_2 = pyccl.nl_pt.translate_IA_norm(
ccl_cosmo, z=z, a1=a_1, a1delta=a_d, a2=a_2, Om_m2_for_c2=False
)
# Code that creates a Pk2D object:
ptc = pyccl.nl_pt.EulerianPTCalculator(
with_NC=True,
with_IA=True,
log10k_min=-4,
log10k_max=2,
nk_per_decade=20,
cosmo=ccl_cosmo,
)
ptt_i = pyccl.nl_pt.PTIntrinsicAlignmentTracer(
c1=(z, c_1), c2=(z, c_2), cdelta=(z, c_d)
)
ptt_m = pyccl.nl_pt.PTMatterTracer()
# IAs x matter
pk_im = ptc.get_biased_pk2d(tracer1=ptt_i, tracer2=ptt_m)
pk_ii = ptc.get_biased_pk2d(tracer1=ptt_i, tracer2=ptt_i)
# Set the parameters for our systematics
systematics_params = ParamsMap(
{
"ia_a_1": a_1,
"ia_a_2": a_2,
"ia_a_d": a_d,
"src0_delta_z": 0.000,
"src1_delta_z": 0.003,
"src2_delta_z": -0.001,
"src3_delta_z": 0.002,
}
)
# Apply the systematics parameters
likelihood.update(systematics_params)
# Prepare the cosmology object
tools.prepare(ccl_cosmo)
# Compute the log-likelihood, using the ccl.Cosmology object as the input
log_like = likelihood.compute_loglike(tools)
print(f"Log-like = {log_like:.1f}")
# Plot the predicted and measured statistic
two_point_0 = likelihood.statistics[0]
assert isinstance(two_point_0, TwoPoint)
# x = two_point_0.ell_or_theta_
# y_data = two_point_0.measured_statistic_
assert isinstance(likelihood, ConstGaussian)
assert likelihood.cov is not None
# y_err = np.sqrt(np.diag(likelihood.cov))[: len(x)]
# y_theory = two_point_0.predicted_statistic_
# pylint: disable=no-member
print(list(two_point_0.cells.keys()))
ells = two_point_0.ells
cells_gg = two_point_0.cells[("shear", "shear")]
cells_gi = two_point_0.cells[("shear", "intrinsic_pt")]
cells_ii = two_point_0.cells[("intrinsic_pt", "intrinsic_pt")]
cells_total = two_point_0.cells["total"]
# pylint: enable=no-member
# Code that computes effect from IA using that Pk2D object
t_lens = ccl.WeakLensingTracer(ccl_cosmo, dndz=(z, nz))
t_ia = ccl.WeakLensingTracer(
ccl_cosmo,
dndz=(z, nz),
has_shear=False,
ia_bias=(z, np.ones_like(z)),
use_A_ia=False,
)
cl_GI = ccl.angular_cl(ccl_cosmo, t_lens, t_ia, ells, p_of_k_a=pk_im)
cl_II = ccl.angular_cl(ccl_cosmo, t_ia, t_ia, ells, p_of_k_a=pk_ii)
# The weak gravitational lensing power spectrum
cl_GG = ccl.angular_cl(ccl_cosmo, t_lens, t_lens, ells)
# The observed angular power spectrum is the sum of the two.
cl_theory = (
cl_GG + 2 * cl_GI + cl_II
) # normally we would also have a third term, +cl_II).
# plt.plot(x, y_theory, label="Total")
plt.plot(ells, cells_gg, label="GG firecrown")
plt.plot(ells, cl_GG, ls="--", label="GG CCL")
plt.plot(ells, -cells_gi, label="-GI firecrown")
plt.plot(ells, -cl_GI, ls="--", label="-GI CCL")
plt.plot(ells, cells_ii, label="II firecrown")
plt.plot(ells, cl_II, ls="--", label="II CCL")
plt.plot(ells, cells_total, label="total firecrown")
plt.plot(ells, cl_theory, ls="--", label="total CCL")
# plt.errorbar(x, y_data, y_err, ls="none", marker="o")
plt.xscale("log")
plt.yscale("log")
plt.xlabel(r"$\ell$")
plt.ylabel(r"$C_\ell$")
plt.legend()
# plt.xlim(right=5e3)
# plt.ylim(bottom=1e-12)
plt.title("TATT IA")
plt.savefig("tatt.png", facecolor="white", dpi=300)
plt.show()
if __name__ == "__main__":
run_likelihood()