-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathfuncCNN.py
206 lines (184 loc) · 7.41 KB
/
funcCNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import numpy as np
import scipy.io as scio
#from sklearn import preprocessing
import tensorflow as tf
import sys
import pickle as pkl
import networkx as nx
import scipy.sparse as sp
def CalSupport(A, lam):
lam1 = lam
A_ = A+lam1*np.eye(np.shape(A)[0])
D_ = np.sum(A_, 1)
D_05 = np.diag(D_**(-0.5))
support = np.matmul(np.matmul(D_05, A_), D_05)
return support
def arr2sparse(arr):
arr_idx = np.argwhere(arr != 0)
arr_sparse = tf.SparseTensor(arr_idx, arr[arr_idx[:, 0], arr_idx[:, 1]], np.shape(arr))
return tf.cast(arr_sparse, dtype = tf.float32)
def parse_index_file(filename):
"""Parse index file."""
index = []
for line in open(filename):
index.append(int(line.strip()))
return index
def sample_mask(idx, l):
"""Create mask."""
mask = np.zeros(l)
mask[idx] = 1
return np.array(mask, dtype=np.bool)
def preprocess_features(features):
"""Row-normalize feature matrix and convert to tuple representation"""
rowsum = np.array(features.sum(1))
r_inv = np.power(rowsum, -1).flatten()
r_inv[np.isinf(r_inv)] = 0.
r_mat_inv = sp.diags(r_inv)
features = r_mat_inv.dot(features)
return sparse_to_tuple(features)
def normalize_adj(adj):
"""Symmetrically normalize adjacency matrix."""
adj = sp.coo_matrix(adj)
rowsum = np.array(adj.sum(1))
d_inv_sqrt = np.power(rowsum, -0.5).flatten()
d_inv_sqrt[np.isinf(d_inv_sqrt)] = 0.
d_mat_inv_sqrt = sp.diags(d_inv_sqrt)
return adj.dot(d_mat_inv_sqrt).transpose().dot(d_mat_inv_sqrt).tocoo()
def sparse_to_tuple(sparse_mx):
"""Convert sparse matrix to tuple representation."""
def to_tuple(mx):
if not sp.isspmatrix_coo(mx):
mx = mx.tocoo()
coords = np.vstack((mx.row, mx.col)).transpose()
values = mx.data
shape = mx.shape
return coords, values, shape
if isinstance(sparse_mx, list):
for i in range(len(sparse_mx)):
sparse_mx[i] = to_tuple(sparse_mx[i])
else:
sparse_mx = to_tuple(sparse_mx)
return sparse_mx
def preprocess_adj(adj):
"""Preprocessing of adjacency matrix for simple GCN model and conversion to tuple representation."""
adj_normalized = normalize_adj(adj + sp.eye(adj.shape[0]))
return sparse_to_tuple(adj_normalized)
def LoadData(dataset_str):
names = ['x', 'y', 'tx', 'ty', 'allx', 'ally', 'graph']
objects = []
for i in range(len(names)):
with open("data/ind.{}.{}".format(dataset_str, names[i]), 'rb') as f:
if sys.version_info > (3, 0):
objects.append(pkl.load(f, encoding='latin1'))
else:
objects.append(pkl.load(f))
x, y, tx, ty, allx, ally, graph = tuple(objects)
test_idx_reorder = parse_index_file("data/ind.{}.test.index".format(dataset_str))
test_idx_range = np.sort(test_idx_reorder)
if dataset_str == 'citeseer':
# Fix citeseer dataset (there are some isolated nodes in the graph)
# Find isolated nodes, add them as zero-vecs into the right position
test_idx_range_full = range(min(test_idx_reorder), max(test_idx_reorder)+1)
tx_extended = sp.lil_matrix((len(test_idx_range_full), x.shape[1]))
tx_extended[test_idx_range-min(test_idx_range), :] = tx
tx = tx_extended
ty_extended = np.zeros((len(test_idx_range_full), y.shape[1]))
ty_extended[test_idx_range-min(test_idx_range), :] = ty
ty = ty_extended
features = sp.vstack((allx, tx)).tolil()
features[test_idx_reorder, :] = features[test_idx_range, :]
adj = nx.adjacency_matrix(nx.from_dict_of_lists(graph))
labels = np.vstack((ally, ty))
labels[test_idx_reorder, :] = labels[test_idx_range, :]
idx_test = test_idx_range.tolist()
idx_train = range(len(y))
idx_val = range(len(y), len(y)+500)
train_mask = sample_mask(idx_train, labels.shape[0])
val_mask = sample_mask(idx_val, labels.shape[0])
test_mask = sample_mask(idx_test, labels.shape[0])
y_train = np.zeros(labels.shape)
y_val = np.zeros(labels.shape)
y_test = np.zeros(labels.shape)
y_train[train_mask, :] = labels[train_mask, :]
y_val[val_mask, :] = labels[val_mask, :]
y_test[test_mask, :] = labels[test_mask, :]
return adj, features, y_train, y_val, y_test, train_mask, val_mask, test_mask
def CalSppr(A, lam1, a1):
num1 = np.shape(A)[0]
A_ = A+lam1*np.eye(num1)
D_ = np.sum(A_, 1)
D_05 = np.diag(D_**(-0.5))
s1 = np.matmul(np.matmul(D_05, A_), D_05)
return a1*np.linalg.inv((np.eye(num1) - (1 - a1)*s1))
def GetKnnAdj(A1, thr, pres_diag):
A = A1.copy()
num1 = np.shape(A)[0]
pos = np.argwhere(A < thr)
A[pos[:, 0], pos[:, 1]] = 0
if pres_diag == True:
A[range(num1), range(num1)] = np.diag(A1)
return A
def preprocess_all0fea(mat1):
s1 = np.sum(mat1, 1)
if np.size(np.argwhere(s1 == 0)) > 0:
mat1 += 1
def CalSupport(A, lam1):
num1 = np.shape(A)[0]
A_ = A+lam1*np.eye(num1)
D_ = np.sum(A_, 1)
D_05 = np.diag(D_**(-0.5))
support = np.matmul(np.matmul(D_05, A_), D_05)
pos0 = np.argwhere(A == 0)
support[pos0[:, 0], pos0[:, 1]] = 0
return support
def construct_feed_dict_1(support, features, labels, labels_mask, placeholders, m1, l1):
"""Construct feed dictionary."""
feed_dict = dict()
feed_dict.update({placeholders['support']: support})
feed_dict.update({placeholders['labels']: labels})
feed_dict.update({placeholders['labels_mask']: labels_mask})
feed_dict.update({placeholders['features']: features})
feed_dict.update({placeholders['num_features_nonzero']: features[1].shape})
feed_dict.update({m1: labels_mask})
feed_dict.update({l1: labels})
return feed_dict
def ismember(A, B):
return [ np.sum((a == B).all()) for a in A ]
def DelRepEdges(edge_pos):
new_edges = []
edge_num = np.shape(edge_pos)[0]
for edge_idx in range(edge_num):
if np.sum(ismember(new_edges, np.array([edge_pos[edge_idx][1], edge_pos[edge_idx][0]]))) <= 0:
new_edges.append(edge_pos[edge_idx])
print(edge_idx)
return new_edges
def processmask(trmask):
trtemask = {}
trtemask['trmask'] = trmask
trtemask['unlabeled_mask'] = np.array(1-trmask, dtype='bool')
return trtemask
def CalCLass01Mat(y_train, train_mask):
y = np.argmax(y_train, axis = 1)
train_idx = np.argwhere(train_mask == False)
y[train_idx] = -1
num_classes = np.max(y)+1
mat01 = np.zeros([np.shape(y_train)[0], np.shape(y_train)[0]])
for i in range(num_classes):
pos = np.argwhere(y == i)
# print(np.shape(mat01))
for j in range(np.shape(pos)[0]):
mat01[pos[j, 0], pos[:, 0]] = 1
mat01[[i for i in range(np.shape(y_train)[0])], [i for i in range(np.shape(y_train)[0])]] = 0
return mat01
def CalIntraClassMat01(y):
num1 = np.shape(y)[0]
num_classes = np.max(y) + 1
mat01_intra = np.zeros([num1, num1])
mat01_inter = np.ones([num1, num1])
for class_idx in range(num_classes):
pos = np.argwhere(y == class_idx)
for pos_idx in range(np.shape(pos)[0]):
mat01_intra[pos[pos_idx, 0], pos[:, 0]] = 1
mat01_inter -= mat01_intra
mat01_intra -= np.eye(num1)
return [mat01_intra, mat01_inter]