-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
983 lines (843 loc) · 40.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
import bdb
from model.data import *
from model.model import *
from warnings import filterwarnings
from PromptGNN import *
import torch
import random
import io
from sklearn.metrics import f1_score
import signal
import os
import dill
import time
def print_log(*values):
print(*values)
def init_worker():
signal.signal(signal.SIGINT, signal.SIG_IGN)
filterwarnings("ignore")
import argparse
parser = argparse.ArgumentParser(description='Pre-training and fine-tuning on a given graph')
'''
Prompt arguments
'''
parser.add_argument('--prompt_size', type=int, default=0,
help='Amount of prompt nodes to attach')
parser.add_argument('--prompt_width', type=int, default=0,
help='How many hop around the target node should the prompt node attach to. 0: only attach to the target node.')
parser.add_argument('--task_embedding_init', type=str, default='knn_6',
help='Which pre-trained task embedding is used for fine-tuning initialization. Valid values: knn_[step], cl, link, zero. ')
parser.add_argument('--position_embedding_step_t', type=int, default=9,
help='Random walk step of position embedding')
parser.add_argument('--position_embedding_weight', type=float, default=1.0,
help='Weight for position embedding')
parser.add_argument('--position_anchor_num', type=float, default=0.0,
help='The ratio of number of anchors and number of nodes')
'''
Pre-training task arguments
'''
parser.add_argument('--pre_training_task', type=str, default='hybrid-knn_6-link',
help='Pre-training tasks. Valid value: "knn_[step]", "link", "cl", and the hybrid tasks formulated as "hybrid-[task1]-[task2]-..."')
parser.add_argument('--knn_margin', type=float, default=1.0,
help='Margin for k-NN task')
parser.add_argument('--knn_center_loss_ratio', type=float, default=0.5,
help='Ratio of center loss against triplet loss, range: [0-1]')
parser.add_argument('--link_margin', type=float, default=0.5,
help='Margin for edge prediction task')
'''
Dataset arguments
'''
parser.add_argument('--data_dir', type=str, default='datadrive/dataset/graph_dblp.pk',
help='The address of preprocessed graph.')
parser.add_argument('--pretrain_model_dir', type=str, default='datadrive/models/ultra_dp_dblp',
help='The address for storing the pre-trained models.')
parser.add_argument('--cache_dir', type=str, default='datadrive/cache',
help='The address for storing the cache.')
parser.add_argument('--cuda', type=int, default=1,
help='Avaiable GPU ID')
parser.add_argument('--sample_depth', type=int, default=6,
help='How many layers within a mini-batch subgraph')
parser.add_argument('--sample_width', type=int, default=128,
help='How many nodes to be sampled per layer per type')
parser.add_argument('--few_shot', type=int, default=32,
help='Few shot sample count for each class. 32 means 32-shot.')
parser.add_argument('--fine_tuning_repeat', type=int, default=5,
help='How many fine-tuning repeat for.')
'''
GNN arguments
'''
parser.add_argument('--conv_name', type=str, default='gat',
choices=['hgt', 'gcn', 'gat', 'rgcn', 'han', 'hetgnn', 'sage'],
help='The name of GNN filter. By default is Heterogeneous Graph Transformer (hgt)')
parser.add_argument('--n_hid', type=int, default=64,
help='Number of hidden dimension')
parser.add_argument('--n_heads', type=int, default=8,
help='Number of attention head')
parser.add_argument('--n_layers', type=int, default=3,
help='Number of GNN layers')
parser.add_argument('--prev_norm', help='Whether to add layer-norm on the previous layers',
action='store_true')
parser.add_argument('--last_norm', help='Whether to add layer-norm on the last layers',
action='store_true')
parser.add_argument('--dropout', type=float, default=0.2,
help='Dropout ratio')
'''
Optimization arguments
'''
parser.add_argument('--max_lr', type=float, default=1e-3,
help='Maximum learning rate.')
parser.add_argument('--ft_max_lr', type=float, default=1e-3,
help='Maximum learning rate for fine-tuning.')
parser.add_argument('--scheduler', type=str, default='cycle',
help='Name of learning rate scheduler.')
parser.add_argument('--ft_scheduler', type=str, default='null',
help='Name of learning rate scheduler for fine-tuning.')
parser.add_argument('--ft_epoch', type=int, default=500,
help='Number of epoch to fine-tune')
parser.add_argument('--pretrain_epoch', type=int, default=20,
help='Number of epoch to pre-train')
parser.add_argument('--n_pool', type=int, default=4,
help='Number of process to sample subgraph')
parser.add_argument('--n_batch', type=int, default=36,
help='Number of batch (sampled graphs) for each epoch')
parser.add_argument('--n_valid', type=int, default=8,
help='Number of validation batch (sampled graphs)')
parser.add_argument('--batch_size', type=int, default=256,
help='Number of output nodes for training')
parser.add_argument('--clip', type=float, default=0.5,
help='Gradient Norm Clipping')
parser.add_argument('--weight_decay', type=float, default=1e-4,
help='Weight decay')
parser.add_argument('--serial', action='store_true',
help='Whether to run graph sampling serial')
args = parser.parse_args()
args_print(args)
is_serial = args.serial
if args.cuda != -1:
device = torch.device("cuda:" + str(args.cuda))
else:
device = torch.device("cpu")
print_log('Start Loading Graph Data...')
graph: Graph = dill.load(open(args.data_dir, 'rb'))
if len(graph.y.shape) == 2 and graph.y.shape[1] == 1:
graph.y = graph.y[:, 0]
reachability_path = args.data_dir.replace(".pk", "_reachability.pk")
if os.path.exists(reachability_path) and args.position_anchor_num != 0:
cache_reachability_dict = dill.load(open(reachability_path, 'rb'))
else:
cache_reachability_dict = None
print_log('Finish Loading Graph Data!')
target_type = 'def'
rel_stop_list = ['self', 'prompt']
pre_target_nodes = graph.pre_target_nodes
train_target_nodes = graph.train_target_nodes
pre_target_nodes = np.concatenate([pre_target_nodes, np.ones(len(pre_target_nodes))]).reshape(2,
-1).transpose()
train_target_nodes = np.concatenate([train_target_nodes, np.ones(len(train_target_nodes))]).reshape(
2, -1).transpose()
repeat_num = int(len(pre_target_nodes) / args.batch_size // args.n_batch)
types = graph.get_types()
node_num = len(graph.node_feature['def'])
position_embedding_step_t = int(args.position_embedding_step_t)
anchors = []
if args.position_anchor_num != 0:
array = np.zeros((node_num, ), dtype=np.float64)
for k in range(len(cache_reachability_dict)):
buff = np.zeros((node_num, ), dtype=np.float64)
rea_idx, rea_prob = cache_reachability_dict[k][position_embedding_step_t]
buff[rea_idx] = rea_prob
array += buff
anchors = (-array).argsort(kind='stable')[:int(args.position_anchor_num * node_num)]
print_log("anchors: ", anchors[:20])
gnn = GNN(conv_name=args.conv_name,
in_dim=len(graph.node_feature[target_type]['emb'].values[0]), n_hid=args.n_hid, \
n_heads=args.n_heads, n_layers=args.n_layers, dropout=args.dropout, num_types=len(types) + 1, \
num_relations=len(graph.get_meta_graph()) + 1, prev_norm=args.prev_norm,
last_norm=args.last_norm, use_RTE=False, final_l2_norm=True)
prompt_gnn = PromptGNN(gnn=gnn, types=types, out_types=graph.y.max().item() + 1,
anchor_num=len(anchors),
prompt_size=args.prompt_size)
prompt_gnn = prompt_gnn.to(device)
sample_methods = []
if args.pre_training_task.startswith("hybrid-"):
x = args.pre_training_task.replace("hybrid-", "")
sample_methods += x.split("-")
else:
sample_methods.append(args.pre_training_task)
print_log(f'pre-training task: {sample_methods}')
def prompting(node_feature, prompt_data, task_embedding, node_type):
if task_embedding is not None:
prompt_idx, center_idx = prompt_data
# task embedding part
prompt_feature = task_embedding.repeat(prompt_idx, 1)
# position embedding part
if len(anchors) > 0:
center_idx = center_idx[:, 0].astype(np.int)
x = []
for idx in center_idx:
reachability_list = cache_reachability_dict[idx]
modulation_features = []
for step in range(1, len(reachability_list)):
if position_embedding_step_t >= 0 and step != position_embedding_step_t:
continue
buff = np.zeros((node_num, ), dtype=np.float64)
rea_idx, rea_prob = reachability_list[step]
buff[rea_idx] = rea_prob
hub_prob = buff[anchors]
hub_prob = hub_prob / (np.std(hub_prob) + 1e-7)
modulation_features.extend(list(hub_prob))
x.append(modulation_features)
x = torch.FloatTensor(np.asarray(x)).to(device)
y = torch.tanh(prompt_gnn.position_embedding(x))
prompt_feature = prompt_feature + y * args.position_embedding_weight
node_feature[-len(prompt_feature):] = prompt_feature
node_type[-len(prompt_feature):] = 1
def get_reachability_dict(n_step, start):
if cache_reachability_dict is None:
edge_list = graph.edge_list['def']['def']['def']
reachability_dict = defaultdict( # step
lambda: defaultdict( # end
lambda: 0.0
)
)
reachability_weight_dict = defaultdict( # step
lambda: defaultdict( # node, prob
lambda: [], []
)
)
reachability_dict[0][start] = 1.0
for step in range(1, n_step + 1):
for front_node in reachability_dict[step - 1]:
leaves = edge_list[front_node].keys()
leaves_count = len(leaves)
if leaves_count > 256:
leaves = np.random.choice(list(leaves), 256, replace=False)
for leaf in leaves:
reachability_dict[step][leaf] += reachability_dict[step - 1][front_node] / len(
leaves)
for k, v in reachability_dict[step].items():
if k != start:
reachability_weight_dict[step][0].append(k)
reachability_weight_dict[step][1].append(v)
reachability_weight_dict[step][1] = np.asarray(reachability_weight_dict[step][1])
return reachability_weight_dict
return cache_reachability_dict[int(start)]
def sample_with_reachability(step, base_node, batch_size, target_nodes):
reachability_dict = get_reachability_dict(step, base_node)
pos_step = random.randint(1, step)
if len(reachability_dict[pos_step][0]) <= 1:
return None, None
positive_reachability_nodes = np.random.choice(
reachability_dict[pos_step][0], size=batch_size // 2, replace=True,
p=reachability_dict[pos_step][1] / np.sum(reachability_dict[pos_step][1])
)
neg_prob = 1 / (reachability_dict[step][1].astype(np.float64))
neg_prob[np.isnan(neg_prob)] = 0
if len(reachability_dict[step][0]) <= 1:
return None, None
neg_prob = neg_prob / np.sum(neg_prob)
if np.isnan(neg_prob).any():
print_log(list(1 / (reachability_dict[step][1].astype(np.float64))))
negative_reachability_nodes = np.random.choice(
reachability_dict[step][0], size=batch_size // 2, replace=True,
p=neg_prob
)
return [np.asarray([x, 1.0]) for x in positive_reachability_nodes], \
[np.asarray([x, 1.0]) for x in negative_reachability_nodes]
def sample_data(seed, target_nodes, time_range, batch_size, feature_extractor,
prompt_node_feature, sample_method):
def index_node(initial_table, indx):
indx = list(map(int, indx['def']))
re = []
for x in initial_table:
re.append(indx.index(x))
return re
def knn_sample():
np.random.seed(seed)
random.seed(seed)
head_nodes = list(target_nodes[np.random.choice(len(target_nodes), 1)])
if sample_method.startswith('knn'):
step = int(sample_method.replace('knn_', ''))
while True:
positive_nodes, negative_nodes = sample_with_reachability(
step,
head_nodes[0][0],
batch_size, target_nodes
)
if positive_nodes is not None and negative_nodes is not None:
break
head_nodes = list(target_nodes[np.random.choice(len(target_nodes), 1)])
else:
raise
# print_log(positive_nodes, negative_nodes)
positive_index_start = 1
negative_index_start = positive_index_start + batch_size // 2
negative_index_end = negative_index_start + batch_size // 2
samp_target_nodes = np.asarray(
head_nodes + positive_nodes + negative_nodes)
feature, times, edge_list, indxs, _, prompt_index = \
sample_subgraph(graph, time_range,
inp={
target_type: samp_target_nodes},
feature_extractor=feature_extractor,
sampled_depth=args.sample_depth,
sampled_number=args.sample_width,
prompt_node_feature=prompt_node_feature,
return_prompt_index=True,
prompt_width=args.prompt_width)
samp_target_nodes_indx = list(samp_target_nodes[:, 0].astype(np.int32))
return_indx = list(indxs['def'].astype(np.int32))
pos_indx = []
neg_indx = []
for i, samp_target_nodes_indx_i in enumerate(samp_target_nodes_indx):
is_pos = i < negative_index_start
assert samp_target_nodes_indx_i in return_indx, f"{samp_target_nodes_indx_i}, {samp_target_nodes_indx}, {return_indx}"
idx = return_indx.index(samp_target_nodes_indx_i)
if is_pos:
pos_indx.append(idx)
else:
neg_indx.append(idx)
removed_edge = []
neg_edge = []
y = graph.y[return_indx]
return 'knn_' + str(step), to_torch(feature, times, edge_list, graph, ['prompt']), np.asarray(removed_edge), \
np.asarray(neg_edge), pos_indx, neg_indx, y, \
samp_target_nodes[:, 0].astype(int), prompt_index
def cl_sample():
np.random.seed(seed)
random.seed(seed)
nodes = target_nodes[np.random.choice(len(target_nodes), batch_size // 2, replace=False)]
feature, times, edge_list, indxs, _, prompt_index_1 = \
sample_subgraph(graph, time_range,
inp={
target_type: np.asarray(nodes)},
feature_extractor=feature_extractor,
sampled_depth=args.sample_depth,
sampled_number=args.sample_width,
prompt_node_feature=prompt_node_feature,
return_prompt_index=True,
prompt_width=args.prompt_width, augment=True)
data1 = to_torch(feature, times, edge_list, graph, ['prompt'])
feature, times, edge_list, indxs, _, prompt_index_2 = \
sample_subgraph(graph, time_range,
inp={
target_type: np.asarray(nodes)},
feature_extractor=feature_extractor,
sampled_depth=args.sample_depth,
sampled_number=args.sample_width,
prompt_node_feature=prompt_node_feature,
return_prompt_index=True,
prompt_width=args.prompt_width, augment=True)
data2 = to_torch(feature, times, edge_list, graph, ['prompt'])
return 'cl', data1, prompt_index_1, data2, prompt_index_2
def link_sample():
np.random.seed(seed)
random.seed(seed)
edge_list = graph.edge_list['def']['def']['def']
p1, p2, n1, n2 = [], [], [], []
nodes = []
while len(nodes) < batch_size:
node = target_nodes[np.random.choice(len(target_nodes), 1)][0]
node_neighbors = list(map(int, edge_list[node[0]].keys()))
nodes.append(node)
index = (len(nodes) - 1) // 2
pos = index % 2 == 0
if pos and len(node_neighbors) >= 1:
pos_node = random.choice(node_neighbors)
nodes.append(np.asarray([float(pos_node), 1.0]))
p1.append(int(node[0]))
p2.append(pos_node)
else:
while True:
neg_node = list(target_nodes[np.random.choice(len(target_nodes), 1)])[0]
neg_node_int = int(neg_node[0])
if neg_node_int not in node_neighbors:
break
nodes.append(np.asarray([float(neg_node_int), 1.0]))
n1.append(int(node[0]))
n2.append(neg_node_int)
feature, times, edge_list, indxs, _, prompt_index = \
sample_subgraph(graph, time_range,
inp={
target_type: np.asarray(nodes)},
feature_extractor=feature_extractor,
sampled_depth=args.sample_depth,
sampled_number=args.sample_width,
prompt_node_feature=prompt_node_feature,
return_prompt_index=True,
prompt_width=args.prompt_width)
p1 = index_node(p1, indxs)
p2 = index_node(p2, indxs)
n1 = index_node(n1, indxs)
n2 = index_node(n2, indxs)
return 'link', to_torch(feature, times, edge_list, graph, ['prompt']), prompt_index, \
p1, p2, n1, n2
while True:
try:
if sample_method.startswith('knn'):
result = knn_sample()
elif sample_method.startswith('link'):
result = link_sample()
elif sample_method.startswith('cl'):
result = cl_sample()
else:
raise
break
except bdb.BdbQuit as e1:
raise e1
except Exception as e:
import traceback
traceback.print_exc()
seed = None
print_log("Error! retry...")
return result
def node_classification_sample(seed, nodes, time_range, mark):
if mark is not None:
cache_path = os.path.join(args.cache_dir,
f"{mark}_{args.sample_depth}_{args.sample_width}_"
f"{args.prompt_size}_{args.prompt_width}_"
f"downstream.pkl")
if os.path.exists(cache_path):
with open(cache_path, 'rb') as f:
return dill.load(f)
np.random.seed(seed)
random.seed(seed)
sample_nodes = np.concatenate([nodes, np.ones(len(nodes))]).reshape(2, -1).transpose()
feature, times, edge_list, _, texts, prompt_idx = sample_subgraph(graph, time_range,
inp={target_type: sample_nodes},
sampled_depth=args.sample_depth,
sampled_number=args.sample_width,
feature_extractor=feature_pyg,
return_prompt_index=True,
prompt_node_feature=prompt_gnn.get_prompt_features_numpy(type='link'),
prompt_width=args.prompt_width)
node_feature, node_type, edge_time, edge_index, edge_type, node_dict, edge_dict = \
to_torch(feature, times, edge_list, graph)
x_ids = np.arange(len(nodes))
result = (
node_feature, node_type, edge_time, edge_index, edge_type, x_ids, graph.y[nodes],
nodes, prompt_idx)
if mark is not None:
if not os.path.isdir(args.cache_dir):
os.makedirs(args.cache_dir)
with open(cache_path, 'wb') as f:
dill.dump(result, f)
return result
def prepare_data(pool):
jobs = []
class DummyGet:
def __init__(self, data):
self.data = data
def get(self):
return self.data
prompt_node_feature = prompt_gnn.get_prompt_features_numpy('link')
if is_serial:
for _ in np.arange(args.n_batch - args.n_valid):
jobs.append(DummyGet(sample_data(None, pre_target_nodes, {1: True}, args.batch_size,
feature_pyg, prompt_node_feature, random.choice(sample_methods))))
for i in np.arange(args.n_valid):
jobs.append(DummyGet(
sample_data(i, train_target_nodes, {1: True}, args.batch_size, feature_pyg,
prompt_node_feature, sample_methods[i % len(sample_methods)])))
else:
for _ in np.arange(args.n_batch - args.n_valid):
jobs.append(pool.apply_async(sample_data, args=(
None, pre_target_nodes, {1: True}, args.batch_size, feature_pyg,
prompt_node_feature, random.choice(sample_methods))))
for i in np.arange(args.n_valid):
jobs.append(pool.apply_async(sample_data, args=(
i, train_target_nodes, {1: True}, args.batch_size, feature_pyg,
prompt_node_feature, sample_methods[i % len(sample_methods)])))
return jobs
if not is_serial:
pool = mp.Pool(args.n_pool, init_worker)
st = time.time()
jobs = prepare_data(pool)
else:
st = time.time()
jobs = prepare_data(None)
best_val = 100000
best_val_str = ""
best_val_step = -1
train_step = 0
stats = []
optimizer = torch.optim.AdamW(prompt_gnn.parameters(), weight_decay=args.weight_decay, eps=1e-06,
lr=args.max_lr)
# optimizer = torch.optim.Adam(prompt_gnn.parameters(), eps=1e-06, lr=args.max_lr)
if args.scheduler == 'cycle':
scheduler = torch.optim.lr_scheduler.OneCycleLR(optimizer, pct_start=0.02,
anneal_strategy='linear', final_div_factor=100, \
max_lr=args.max_lr,
total_steps=repeat_num * args.n_batch * args.pretrain_epoch + 1)
elif args.scheduler == 'cosine':
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, repeat_num * args.n_batch,
eta_min=1e-6)
else:
scheduler = None
print_log('Start Pretraining...', args.pretrain_epoch, repeat_num, len(pre_target_nodes))
def distance(a, b):
return -torch.cosine_similarity(a, b, dim=0) + 1
labels_group = None
init = False
best_f1_str = ""
best_f1 = [-1, -1, -1]
metrics = defaultdict(lambda: defaultdict(lambda: []))
cri = torch.nn.NLLLoss()
def get_knn_loss(params, is_test):
task_name, data, removed_edge, neg_edge, pos_indx, neg_indx, y, raw_node, prompt_index = params
if type(y) == np.ndarray:
y_np = y
else:
y_np = y.numpy()
pos_correct_prob = np.mean((y_np[0] == y_np[pos_indx]).astype(np.int32))
neg_correct_prob = np.mean((y_np[0] == y_np[neg_indx]).astype(np.int32))
node_feature, node_type, edge_time, edge_index, edge_type, node_dict, edge_dict = data
node_feature = node_feature.to(device) # [N, F]
node_type = node_type.to(device)
prompting(node_feature, prompt_index, prompt_gnn.get_task_embedding_pytorch(task_name),
node_type)
edge_time = edge_time.to(device) # [E, ]
edge_index = edge_index.to(device) # [2, E]
edge_type = edge_type.to(device) # [E, ]
node_emb_gnn = prompt_gnn.gnn(node_feature, node_type, edge_time, edge_index,
edge_type) # [N, F2]
node_emb = node_emb_gnn
anchor = torch.mean(node_emb[pos_indx, :], dim=0, keepdim=False)
pos_dis = torch.stack(
[distance(anchor, node_emb[i]) for i in pos_indx])
neg_dis = torch.stack(
[distance(anchor, node_emb[i]) for i in neg_indx])
center_loss = (pos_dis ** 2).mean()
max_pos = torch.log(torch.exp(pos_dis).sum())
min_neg = torch.log(torch.exp(args.knn_margin - neg_dis).sum())
neg_loss = torch.relu(max_pos + min_neg) ** 2
loss = center_loss * args.knn_center_loss_ratio + neg_loss * (1 - args.knn_center_loss_ratio)
return loss, 0.0, pos_correct_prob, neg_correct_prob
def get_link_loss(params, is_test):
task_name, data, prompt_index, p1, p2, n1, n2 = params
node_feature, node_type, edge_time, edge_index, edge_type, node_dict, edge_dict = data
node_feature = node_feature.to(device) # [N, F]
node_type = node_type.to(device)
prompting(node_feature, prompt_index, prompt_gnn.get_task_embedding_pytorch(task_name), node_type)
edge_time = edge_time.to(device) # [E, ]
edge_index = edge_index.to(device) # [2, E]
edge_type = edge_type.to(device) # [E, ]
node_emb = prompt_gnn.gnn(node_feature, node_type, edge_time, edge_index,
edge_type) # [N, F2]
pos_embedding_1 = node_emb[p1] # [Np, E]
pos_embedding_2 = node_emb[p2] # [Np, E]
neg_embedding_1 = node_emb[n1] # [Np, E]
neg_embedding_2 = node_emb[n2] # [Np, E]
loss = torch.cosine_embedding_loss(
pos_embedding_1,
pos_embedding_2,
margin=args.link_margin,
target=torch.ones(len(pos_embedding_1)).to(device)
).mean() + torch.cosine_embedding_loss(
neg_embedding_1,
neg_embedding_2,
margin=args.link_margin,
target=-torch.ones(len(neg_embedding_1)).to(device)
).mean()
tp = (torch.cosine_similarity(pos_embedding_1, pos_embedding_2) >= 0).int().sum().item()
fp = len(p1) - tp
tn = (torch.cosine_similarity(neg_embedding_1, neg_embedding_2) < 0).int().sum().item()
fn = len(n1) - tn
acc = (tp + tn) / (tp + tn + fp + fn)
precision = (tp) / (tp + fp)
recall = (tp) / (tp + fn)
return loss, acc, precision, recall
def get_cl_loss(params, is_test):
task_name, data1, prompt_index_1, data2, prompt_index_2 = params
node_feature, node_type, edge_time, edge_index, edge_type, node_dict, edge_dict = data1
node_feature = node_feature.to(device) # [N, F]
node_type = node_type.to(device)
prompting(node_feature, prompt_index_1, prompt_gnn.get_task_embedding_pytorch(task_name), node_type)
edge_time = edge_time.to(device) # [E, ]
edge_index = edge_index.to(device) # [2, E]
edge_type = edge_type.to(device) # [E, ]
node_emb_1 = prompt_gnn.gnn(node_feature, node_type, edge_time, edge_index,
edge_type)[:args.batch_size // 2, :] # [N, F2]
node_feature, node_type, edge_time, edge_index, edge_type, node_dict, edge_dict = data2
node_feature = node_feature.to(device) # [N, F]
node_type = node_type.to(device)
prompting(node_feature, prompt_index_2, prompt_gnn.get_task_embedding_pytorch(task_name), node_type)
edge_time = edge_time.to(device) # [E, ]
edge_index = edge_index.to(device) # [2, E]
edge_type = edge_type.to(device) # [E, ]
node_emb_2 = prompt_gnn.gnn(node_feature, node_type, edge_time, edge_index,
edge_type)[:args.batch_size // 2, :] # [N, F2]
node_emb_neg = torch.concat([node_emb_2[1:, :], node_emb_2[:1, ]], dim=0)
loss = torch.cosine_embedding_loss(
node_emb_1,
node_emb_2,
margin=args.link_margin,
target=torch.ones(len(node_emb_1)).to(device)
).mean() + torch.cosine_embedding_loss(
node_emb_1,
node_emb_neg,
margin=args.link_margin,
target=-torch.ones(len(node_emb_1)).to(device)
).mean()
tp = (torch.cosine_similarity(node_emb_1, node_emb_2) >= 0).int().sum().item()
fp = len(node_emb_1) - tp
tn = (torch.cosine_similarity(node_emb_1, node_emb_neg) < 0).int().sum().item()
fn = len(node_emb_1) - tn
acc = (tp + tn) / (tp + tn + fp + fn)
precision = (tp) / (tp + fp)
recall = (tp) / (tp + fn)
return loss, acc, precision, recall
def get_loss(params, is_test):
if params[0].startswith('knn'):
return get_knn_loss(params, is_test)
elif params[0] == 'link':
return get_link_loss(params, is_test)
elif params[0] == 'cl':
return get_cl_loss(params, is_test)
else:
raise ValueError(params[0])
try:
for epoch in np.arange(args.pretrain_epoch) + 1:
for batch in np.arange(repeat_num) + 1:
# torch.cuda.empty_cache()
train_data = [job.get() for job in jobs[:-args.n_valid]]
valid_data = [job.get() for job in jobs[-args.n_valid:]]
if not is_serial:
pool.close()
pool.join()
pool = mp.Pool(args.n_pool, init_worker)
jobs = prepare_data(pool)
else:
jobs = prepare_data(None)
et = time.time()
print_log('Data Preparation: %.1fs' % (et - st))
prompt_gnn.train()
train_losses = []
train_extras = []
for params in train_data:
loss, extra, prob1, prob2 = get_loss(params, False)
optimizer.zero_grad()
loss.backward()
torch.nn.utils.clip_grad_norm_(prompt_gnn.parameters(), args.clip)
optimizer.step()
train_losses.append(loss.item())
train_extras.append(extra)
if scheduler is not None:
scheduler.step()
prompt_emb = prompt_gnn.get_task_embedding_pytorch(params[0])
if prompt_emb is None:
prompt_emb_mean = 0.0
prompt_emb_std = 0.0
else:
detach = prompt_emb.detach().cpu().numpy()
prompt_emb_mean = np.mean(detach)
prompt_emb_std = np.std(detach)
print_log(f"[{params[0]}] loss: {loss:.5f}, prob: {prob1:.5f} / {prob2:.5f}, extra: {extra:.5f}, task_emb: {prompt_emb_mean:.5f}±{prompt_emb_std:.5f}")
# torch.cuda.empty_cache()
'''
Valid
'''
lr = optimizer.param_groups[0]['lr']
prompt_gnn.eval()
print_log('start eval')
with torch.no_grad():
valid_losses = []
valid_extras = []
for params in valid_data:
valid_loss, valid_extra, valid_prob1, valid_prob2 = get_loss(params, True)
print_log(f"valid: [{params[0]}] loss: {valid_loss:.5f}, prob: {valid_prob1:.5f} / {valid_prob2:.5f}, extra: {valid_extra:.5f}")
valid_losses.append(valid_loss.item())
valid_extras.append(valid_extra)
st = time.time()
valid_loss_str = f"{float(np.average(valid_losses)):.5f}"
print_log(f"Epoch: {epoch} ({batch} / {repeat_num}) {round(st - et, 1)}s "
f"LR: {lr:.5f} "
f"Loss: {float(np.average(train_losses)):.5f} / {float(np.average(valid_losses)):.5f} "
f"Extra: {np.average(train_extras):.5f} / {np.average(valid_extras):.5f} ")
metrics['loss']['train'].append(np.average(train_losses))
metrics['loss']['valid'].append(np.average(valid_losses))
metrics['LR']['LR'].append(optimizer.param_groups[0]['lr'])
if np.average(valid_losses) < best_val:
best_val = np.average(valid_losses)
best_val_str = f"{epoch} ({batch} / {repeat_num}) - {valid_loss_str} - {best_val}"
best_val_step = epoch
print_log('UPDATE!!!')
if not os.path.isdir(os.path.dirname(args.pretrain_model_dir)):
os.mkdir(os.path.dirname(args.pretrain_model_dir))
torch.save(prompt_gnn.state_dict(), args.pretrain_model_dir)
else:
print_log(f"Previous best: {best_val_str}")
if epoch - best_val_step >= 50:
break
if not is_serial:
pool.terminate()
pool.join()
except KeyboardInterrupt as e:
print_log("Caught KeyboardInterrupt, terminating workers")
except Exception as e1:
pool.terminate()
pool.join()
raise e1
# fine-tune with few shot
print_log("Start fine-tune")
if not os.path.isdir(os.path.dirname(args.pretrain_model_dir)):
os.mkdir(os.path.dirname(args.pretrain_model_dir))
if not os.path.isfile(args.pretrain_model_dir):
torch.save(prompt_gnn.state_dict(), args.pretrain_model_dir)
print_log("warning: fine-tune with random initialization!")
def sample_fewshot(total_nodes, seed):
total_nodes = list(total_nodes)
random.seed(seed)
random.shuffle(total_nodes)
random.seed(None)
result = []
remain_num = [args.few_shot for _ in range(graph.y.max().item() + 1)]
for n in total_nodes:
if remain_num[graph.y[n]] > 0:
remain_num[graph.y[n]] -= 1
result.append(n)
if sum(remain_num) == 0:
break
return np.asarray(result)
final_result = {
'pt_step': int(best_val_step),
'pt_micro': best_f1[0],
'pt_macro': best_f1[1],
'pt_weight': best_f1[2]
}
few_shot_metrics = set()
def update_one_result(dit):
global few_shot_metrics
for k, v in dit.items():
few_shot_metrics.add(k)
if k not in final_result:
final_result[k] = []
final_result[k].append(v)
ce = torch.nn.CrossEntropyLoss()
def prototypical_finetune(nodes, is_test=False, mask=None):
node_feature, node_type, edge_time, edge_index, edge_type, x_ids, ylabel, raw_ids, prompt_idx = \
node_classification_sample(randint(), nodes, {1: True}, mask)
node_feature = node_feature.to(device)
node_type = node_type.to(device)
prompting(node_feature, prompt_idx, prompt_gnn.get_task_embedding_pytorch(args.task_embedding_init), node_type)
embedding_gnn = prompt_gnn.gnn.forward(node_feature, node_type,
edge_time.to(device), edge_index.to(device),
edge_type.to(device))[x_ids] # (B, H), ylabel: (B, ), proto: (T, H)
types_sim = []
for type_id in range(len(prompt_gnn.prototypical_embedding)):
a = embedding_gnn
b = prompt_gnn.prototypical_embedding[type_id:type_id + 1]
sim = torch.cosine_similarity(a, b, dim=1)
types_sim.append(sim)
types_sim = torch.stack(types_sim).transpose(0, 1) # [B, T]
ylabel = ylabel.to(device)
loss = ce(types_sim, ylabel)
predicts = torch.argmax(types_sim, dim=1)
ylabel = ylabel.detach().cpu().numpy()
predicts = predicts.detach().cpu().numpy()
f1_micro = f1_score(ylabel, predicts, average='micro')
f1_macro = f1_score(ylabel, predicts, average='macro')
f1_weighted = f1_score(ylabel, predicts, average='weighted')
return loss, (f1_micro, f1_macro, f1_weighted)
for repeat_i in range(args.fine_tuning_repeat):
repeat_flag = f"{repeat_i}"
if args.few_shot != 8:
repeat_flag += f"{args.few_shot}"
few_shot_tune_nodes = sample_fewshot(graph.train_target_nodes, repeat_i)
few_shot_valid_nodes = sample_fewshot(graph.valid_target_nodes, repeat_i)
print_log(f"start seed: {repeat_i}\ntune: {few_shot_tune_nodes}\nvalid: {few_shot_valid_nodes}\ntotal: {len(graph.train_target_nodes)}")
few_shot_tune_nodes_concat = np.concatenate(
[few_shot_tune_nodes, np.ones(len(few_shot_tune_nodes))]).reshape(
2, -1).transpose()
few_shot_valid_nodes_concat = np.concatenate(
[few_shot_valid_nodes, np.ones(len(few_shot_valid_nodes))]).reshape(
2, -1).transpose()
prompt_gnn.load_state_dict(torch.load(args.pretrain_model_dir, map_location=device), strict=False)
prompt_gnn.to(device)
prompt_gnn.train()
t = Texttable()
t.add_row(["Name", "Shape", "Param", "Trainable"])
s = 0
for name, param in prompt_gnn.named_parameters():
cur_size = np.prod(param.shape)
if param.requires_grad:
s += cur_size
t.add_row((name, param.shape, cur_size, param.requires_grad))
print_log(t.draw())
print_log(f"Total trainable params: {s}")
trainable_params = filter(lambda p: p.requires_grad, prompt_gnn.parameters())
optimizer = torch.optim.AdamW(trainable_params, weight_decay=args.weight_decay, eps=1e-06,
lr=args.ft_max_lr)
if args.ft_scheduler == 'cosine':
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, 500, eta_min=1e-6)
elif args.ft_scheduler == 'null':
scheduler = None
else:
raise ValueError(args.ft_scheduler)
best_f1 = [-1, -1, -1]
early_stop_counter = 0
best_val_step = -1
best_val_loss = 100000000
for name, param in prompt_gnn.named_parameters():
param.requires_grad = True
trainable_params = filter(lambda p: p.requires_grad, prompt_gnn.parameters())
optimizer = torch.optim.AdamW(trainable_params, weight_decay=args.weight_decay, eps=1e-06,
lr=args.ft_max_lr)
best_model_io = None
for epoch in np.arange(args.ft_epoch) + 1:
prompt_gnn.eval()
with torch.no_grad():
valid_loss, valid_f1s = prototypical_finetune(few_shot_valid_nodes, mask=f'valid-fs-{repeat_flag}')
valid_loss = valid_loss.item()
if valid_loss < best_val_loss:
print_log(f"Save model: {valid_loss} < {best_val_loss} (best), f1 = {valid_f1s}")
best_val_step = epoch
best_val_loss = valid_loss
early_stop_counter = 0
best_f1 = valid_f1s
best_model_io = io.BytesIO()
torch.save(prompt_gnn.state_dict(), best_model_io)
best_model_io.seek(0)
# torch.save(prompt_gnn.state_dict(), args.pretrain_model_dir + "_ft")
else:
print_log(f"Not save: {valid_loss} >= {best_val_loss} (best), f1 = {valid_f1s}")
early_stop_counter += 1
if early_stop_counter >= 100:
break
prompt_gnn.train()
loss, f1s = prototypical_finetune(few_shot_tune_nodes, mask=f'train-fs-{repeat_flag}-{epoch % 10}')
print_log(f"{repeat_i}-{epoch} [{early_stop_counter}] loss = {loss.item():.5f}, f1 = {f1s}, lr = {optimizer.param_groups[0]['lr']:.5f}")
optimizer.zero_grad()
loss.backward()
torch.nn.utils.clip_grad_norm_(prompt_gnn.parameters(), args.clip)
optimizer.step()
if scheduler is not None:
scheduler.step()
update_one_result({
'ft_micro': best_f1[0],
'ft_macro': best_f1[1],
'ft_weight': best_f1[2],
'ft_step': int(best_val_step)
})
prompt_gnn.load_state_dict(torch.load(best_model_io, map_location=device), strict=True)
prompt_gnn.to(device)
prompt_gnn.eval()
with torch.no_grad():
test_loss, test_f1s = prototypical_finetune(graph.test_target_nodes, is_test=True, mask=f'test')
print_log(f"test: {test_loss.item():.5f}, f1 = {test_f1s}")
val_loss, val_f1s = prototypical_finetune(few_shot_valid_nodes, mask=f'valid-fs-{repeat_flag}')
print_log(f"valid: {val_loss.item():.5f}, f1 = {val_f1s}")
train_loss, train_f1s = prototypical_finetune(few_shot_tune_nodes)
print_log(f"train: {train_loss.item():.5f}, f1 = {train_f1s}")
update_one_result({
'test_loss': test_loss.item(),
'test_micro': test_f1s[0],
'test_macro': test_f1s[1],
'test_weight': test_f1s[2],
'test_train_micro': train_f1s[0],
'test_valid_micro': val_f1s[0]
})
for e in few_shot_metrics:
final_result[e + "_std"] = float(np.std(final_result[e]))
final_result[e] = float(np.mean(final_result[e]))
print_log(final_result)