-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathengine.py
532 lines (429 loc) · 25.2 KB
/
engine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
import math
import sys
import os
import datetime
import json
from turtle import undo
from typing import Iterable
from pathlib import Path
import torch
import numpy as np
from timm.utils import accuracy
from timm.optim import create_optimizer
from timm.utils.model_ema import ModelEmaV2
import copy
import utils
import torch.nn.functional as F
from sklearn.cluster import KMeans
from sklearn.manifold import TSNE
import matplotlib.pyplot as plt
class Engine():
def __init__(self, model=None,device=None,class_mask=[], domain_list= [], args=None):
self.current_task=0
self.current_classes=[]
#! distillation
self.class_group_num = 5
self.classifier_pool = [None for _ in range(self.class_group_num)]
self.class_group_train_count = [0 for _ in range(self.class_group_num)]
self.task_num = len(class_mask)
self.class_group_size = len(class_mask[0])
self.distill_head= None
self.model = model
self.num_classes= max([item for mask in class_mask for item in mask])+1
self.labels_in_head = np.arange(self.num_classes)
self.added_classes_in_cur_task = set()
self.head_timestamps = np.zeros_like(self.labels_in_head)
self.args=args
self.class_mask=class_mask
self.domain_list=domain_list
self.task_type="initial"
self.args=args
self.adapter_vec=[]
self.task_type_list=[]
self.class_group_list=[]
self.adapter_vec_label=[]
self.device=device
if self.args.d_threshold:
self.acc_per_label = np.zeros((self.args.class_num, self.args.domain_num))
self.label_train_count = np.zeros((self.args.class_num))
self.tanh = torch.nn.Tanh()
self.cs=torch.nn.CosineSimilarity(dim=1,eps=1e-6)
def kl_div(self,p,q):
p=F.softmax(p,dim=1)
q=F.softmax(q,dim=1)
kl = torch.mean(torch.sum(p * torch.log(p / q),dim=1))
return kl
def set_new_head(self, model, labels_to_be_added,task_id):
len_new_nodes = len(labels_to_be_added)
self.labels_in_head = np.concatenate((self.labels_in_head, labels_to_be_added))
self.added_classes_in_cur_task.update(labels_to_be_added)
self.head_timestamps = np.concatenate((self.head_timestamps, [task_id]*len_new_nodes))
prev_weight, prev_bias = model.head.weight, model.head.bias
prev_shape = prev_weight.shape # (class, dim)
new_head = torch.nn.Linear(prev_shape[-1], prev_shape[0] + len_new_nodes)
new_head.weight[:prev_weight.shape[0]].data.copy_(prev_weight)
new_head.weight[prev_weight.shape[0]:].data.copy_(prev_weight[labels_to_be_added])
new_head.bias[:prev_weight.shape[0]].data.copy_(prev_bias)
new_head.bias[prev_weight.shape[0]:].data.copy_(prev_bias[labels_to_be_added])
print(f"Added {len_new_nodes} nodes with label ({labels_to_be_added})")
return new_head
def inference_acc(self,model,data_loader,device):
print("Start detecting labels to be added...")
accuracy_per_label = []
correct_pred_per_label = [0 for i in range(len(self.current_classes))]
num_instance_per_label = [0 for i in range(len(self.current_classes))]
with torch.no_grad():
for batch_idx, (input, target) in enumerate(data_loader):
if self.args.develop:
if batch_idx>200:
break
input = input.to(device, non_blocking=True)
target = target.to(device, non_blocking=True)
output = model(input)
if output.shape[-1] > self.num_classes: # there are already added nodes till now
output,_,_ = self.get_max_label_logits(output, self.current_classes) # there are added nodes previously, but not in current task -> get maximum value and use it
mask = self.current_classes
not_mask = np.setdiff1d(np.arange(self.num_classes), mask)
not_mask = torch.tensor(not_mask, dtype=torch.int64).to(device)
logits = output.index_fill(dim=1, index=not_mask, value=float('-inf'))
_, pred = torch.max(logits, 1)
correct_predictions = (pred == target)
for i, label in enumerate(self.current_classes):
mask = (target == label)
num_correct_pred = torch.sum(correct_predictions[mask])
correct_pred_per_label[i] += num_correct_pred.item()
num_instance_per_label[i] += sum(mask).item()
for correct, num in zip (correct_pred_per_label, num_instance_per_label):
accuracy_per_label.append(round(correct/num,2))
return accuracy_per_label
def detect_labels_to_be_added(self,inference_acc, thresholds=[]):
labels_with_low_accuracy = []
if self.args.d_threshold:
for label,acc,thre in zip(self.current_classes, inference_acc,thresholds):
if acc <= thre:
labels_with_low_accuracy.append(label)
else: # static threshold
for label,acc in zip(self.current_classes, inference_acc):
if acc <= self.args.thre:
labels_with_low_accuracy.append(label)
print(f"Labels whose node to be increased: {labels_with_low_accuracy}")
return labels_with_low_accuracy
def find_same_cluster_items(self,vec):
if self.kmeans.n_clusters == 1:
other_cluster_vecs = self.adapter_vec_array
other_cluster_vecs = torch.tensor(other_cluster_vecs,dtype=torch.float32).to(self.device)
same_cluster_vecs = None
else:
predicted_cluster = self.kmeans.predict(vec.unsqueeze(0).detach().cpu())[0]
same_cluster_vecs = self.adapter_vec_array[self.cluster_assignments == predicted_cluster]
other_cluster_vecs = self.adapter_vec_array[self.cluster_assignments != predicted_cluster]
same_cluster_vecs = torch.tensor(same_cluster_vecs,dtype=torch.float32).to(self.device)
other_cluster_vecs = torch.tensor(other_cluster_vecs,dtype=torch.float32).to(self.device)
return same_cluster_vecs, other_cluster_vecs
def calculate_l2_distance(self,diff_adapter, other):
weights=[]
for o in other:
l2_distance = torch.norm(diff_adapter - o, p=2)
weights.append(l2_distance.item())
weights = torch.tensor(weights)
weights = weights / torch.sum(weights) # summation-> 1
return weights
def train_one_epoch(self,model: torch.nn.Module,
criterion, data_loader: Iterable, optimizer: torch.optim.Optimizer,
device: torch.device, epoch: int, max_norm: float = 0,
set_training_mode=True, task_id=-1, class_mask=None, ema_model = None, args = None,):
model.train(set_training_mode)
metric_logger = utils.MetricLogger(delimiter=" ")
metric_logger.add_meter('Lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
metric_logger.add_meter('Loss', utils.SmoothedValue(window_size=1, fmt='{value:.4f}'))
header = f'Train: Epoch[{epoch+1:{int(math.log10(args.epochs))+1}}/{args.epochs}]'
for batch_idx, (input, target) in enumerate(metric_logger.log_every(data_loader, args.print_freq, header)):
if self.args.develop:
if batch_idx>20:
break
input = input.to(device, non_blocking=True)
target = target.to(device, non_blocking=True)
output = model(input) # (bs, class + n)
distill_loss=0
if self.distill_head != None:
feature = model.forward_features(input)[:,0]
output_distill = self.distill_head(feature)
#! exclude added nodes in current task during distillation
mask = torch.isin(torch.tensor(self.labels_in_head), torch.tensor(self.current_classes))
cur_class_nodes = torch.where(mask)[0]#[:-len(self.added_classes_in_cur_task)] #! to be fixed
m=torch.isin(torch.tensor(self.labels_in_head[cur_class_nodes]), torch.tensor(list(self.added_classes_in_cur_task)))
distill_node_indices = self.labels_in_head[cur_class_nodes][~m]
distill_loss = self.kl_div(output[:,distill_node_indices], output_distill[:,distill_node_indices])
if output.shape[-1] > self.num_classes: # there are already added nodes till now
output,_,_ = self.get_max_label_logits(output, class_mask[task_id],slice=False)
if len(self.added_classes_in_cur_task) > 0: # there are added nodes in current task
for added_class in self.added_classes_in_cur_task:
cur_node = np.where(self.labels_in_head == added_class)[0][-1] # the latest appended node
output[:, added_class] = output[:,cur_node]# replace logit value of added label
output = output[:, :self.num_classes]
# here is the trick to mask out classes of non-current tasks
if args.train_mask and class_mask is not None:
mask = class_mask[task_id]
not_mask = np.setdiff1d(np.arange(args.nb_classes), mask)
not_mask = torch.tensor(not_mask, dtype=torch.int64).to(device)
logits = output.index_fill(dim=1, index=not_mask, value=float('-inf'))
loss = criterion(logits, target) # (bs, class), (bs)
if self.args.use_cast_loss:
if len(self.adapter_vec)> args.k:
cur_adapters = model.get_adapter()
self.cur_adapters = self.flatten_parameters(cur_adapters)
diff_adapter = self.cur_adapters-self.prev_adapters
_, other = self.find_same_cluster_items(diff_adapter)
sim = 0
# if self.args.ws:
weights = self.calculate_l2_distance(diff_adapter,other)
for o,w in zip(other,weights):
if self.args.norm_cast:
sim += w * torch.matmul(diff_adapter, o) / (torch.norm(diff_adapter)*torch.norm(o))
else:
sim += w * torch.matmul(diff_adapter, o)
# else:
# for o in other:
# sim += torch.matmul(diff_adapter, o)
# sim /= len(other)
orth_loss = args.beta * torch.abs(sim)
if self.args.use_cast_loss:
if orth_loss>0:
loss += orth_loss
if self.args.IC:
if distill_loss > 0:
loss += distill_loss
acc1, acc5 = accuracy(logits, target, topk=(1, 5))
if not math.isfinite(loss.item()):
print("Loss is {}, stopping training".format(loss.item()))
sys.exit(1)
optimizer.zero_grad()
loss.backward(retain_graph=True)
optimizer.step()
torch.cuda.synchronize()
metric_logger.update(Loss=loss.item())
metric_logger.update(Lr=optimizer.param_groups[0]["lr"])
metric_logger.meters['Acc@1'].update(acc1.item(), n=input.shape[0])
metric_logger.meters['Acc@5'].update(acc5.item(), n=input.shape[0])
if ema_model is not None:
ema_model.update(model.get_adapter())
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
def get_max_label_logits(self,output, class_mask,task_id=None, slice=True,target=None):
#! Get max value for each label output
correct=0
total=0
for label in range(self.num_classes):
label_nodes = np.where(self.labels_in_head == label)[0]
output[:,label],max_index = torch.max(output[:,label_nodes],dim=1)
if slice:
output = output[:, :self.num_classes] # discard logits of added nodes
return output,correct,total
@torch.no_grad()
def evaluate(self, model: torch.nn.Module, data_loader,
device, task_id=-1, class_mask=None, ema_model=None, args=None,):
criterion = torch.nn.CrossEntropyLoss()
metric_logger = utils.MetricLogger(delimiter=" ")
header = 'Test: [Task {}]'.format(task_id + 1)
# switch to evaluation mode
model.eval()
correct_sum, total_sum = 0,0
label_correct, label_total = np.zeros((self.class_group_size)), np.zeros((self.class_group_size))
with torch.no_grad():
for batch_idx,(input, target) in enumerate(metric_logger.log_every(data_loader, args.print_freq, header)):
if args.develop:
if batch_idx>20:
break
input = input.to(device, non_blocking=True)
target = target.to(device, non_blocking=True)
# compute output
output = model(input)
output, correct, total = self.get_max_label_logits(output, class_mask[task_id],task_id=task_id, target=target,slice=True)
output_ema = [output.softmax(dim=1)]
correct_sum+=correct
total_sum+=total
if ema_model is not None:
tmp_adapter = model.get_adapter()
model.put_adapter(ema_model.module)
output = model(input)
output,_,_ = self.get_max_label_logits(output, class_mask[task_id],slice=True)
output_ema.append(output.softmax(dim=1))
model.put_adapter(tmp_adapter)
output = torch.stack(output_ema, dim=-1).max(dim=-1)[0]
loss = criterion(output, target)
if self.args.d_threshold and self.current_task +1 != self.args.num_tasks and self.current_task == task_id:
label_correct, label_total = self.update_acc_per_label(label_correct, label_total, output, target)
acc1, acc5 = accuracy(output, target, topk=(1, 5))
acc1, acc5 = accuracy(output, target, topk=(1, 5))
metric_logger.meters['Loss'].update(loss.item())
metric_logger.meters['Acc@1'].update(acc1.item(), n=input.shape[0])
metric_logger.meters['Acc@5'].update(acc5.item(), n=input.shape[0])
if total_sum>0:
print(f"Max Pooling acc: {correct_sum/total_sum}")
if self.args.d_threshold and task_id == self.current_task:
domain_idx = int(self.label_train_count[self.current_classes][0])
self.acc_per_label[self.current_classes, domain_idx] += np.round(label_correct / label_total, decimals=3)
print(self.label_train_count)
print(self.acc_per_label)
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print('* Acc@1 {top1.global_avg:.3f} Acc@5 {top5.global_avg:.3f} loss {losses.global_avg:.3f}'
.format(top1=metric_logger.meters['Acc@1'], top5=metric_logger.meters['Acc@5'], losses=metric_logger.meters['Loss']))
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}
@torch.no_grad()
def evaluate_till_now(self,model: torch.nn.Module, data_loader,
device, task_id=-1, class_mask=None, acc_matrix=None, ema_model=None, args=None,):
stat_matrix = np.zeros((3, args.num_tasks)) # 3 for Acc@1, Acc@5, Loss
for i in range(task_id+1):
test_stats = self.evaluate(model=model, data_loader=data_loader[i]['val'],
device=device, task_id=i, class_mask=class_mask, ema_model=ema_model, args=args)
stat_matrix[0, i] = test_stats['Acc@1']
stat_matrix[1, i] = test_stats['Acc@5']
stat_matrix[2, i] = test_stats['Loss']
acc_matrix[i, task_id] = test_stats['Acc@1']
avg_stat = np.divide(np.sum(stat_matrix, axis=1), task_id+1)
diagonal = np.diag(acc_matrix)
result_str = "[Average accuracy till task{}]\tAcc@1: {:.4f}\tAcc@5: {:.4f}\tLoss: {:.4f}".format(task_id+1, avg_stat[0], avg_stat[1], avg_stat[2])
if task_id > 0:
forgetting = np.mean((np.max(acc_matrix, axis=1) -
acc_matrix[:, task_id])[:task_id])
backward = np.mean((acc_matrix[:, task_id] - diagonal)[:task_id])
result_str += "\tForgetting: {:.4f}\tBackward: {:.4f}".format(forgetting, backward)
print(result_str)
return test_stats
def flatten_parameters(self,modules):
flattened_params = []
for m in modules:
params = list(m.parameters())
flattened_params.extend(params)
return torch.cat([param.view(-1) for param in flattened_params])
def cluster_adapters(self):
k = self.args.k
if len(self.adapter_vec) > k:
self.adapter_vec_array = torch.stack(self.adapter_vec).detach().cpu().numpy().astype(float)
self.kmeans = KMeans(n_clusters=k,n_init=10)
self.kmeans.fit(self.adapter_vec_array)
self.cluster_assignments = self.kmeans.labels_
print("Cluster(shifts) Assignments:", self.cluster_assignments)
def pre_train_epoch(self, model: torch.nn.Module, epoch: int = 0, task_id: int = 0, args = None,):
if task_id == 0 or args.num_freeze_epochs < 1:
return model
if epoch == 0:
for n, p in model.named_parameters():
if 'adapter' in n:
p.requires_grad = False
print('Freezing adapter parameters for {} epochs'.format(args.num_freeze_epochs))
if epoch == args.num_freeze_epochs:
for n, p in model.named_parameters():
if 'adapter' in n:
p.requires_grad = True
print('Unfreezing adapter parameters')
return model
def pre_train_task(self, model, data_loader, device, task_id, args):
self.current_task += 1
self.current_class_group = int(min(self.class_mask[task_id])/self.class_group_size)
self.class_group_list.append(self.current_class_group)
self.current_classes = self.class_mask[task_id]
print(f"\n\nTASK : {task_id}")
self.added_classes_in_cur_task = set()
#! distillation
if self.class_group_train_count[self.current_class_group]==0:
self.distill_head=None
else: # already seen classes
if self.args.IC:
self.distill_head = self.classifier_pool[self.current_class_group]
inf_acc = self.inference_acc(model, data_loader, device)
thresholds=[]
if self.args.d_threshold:
count = self.class_group_train_count[self.current_class_group]
if count > 0:
average_accs = np.sum(self.acc_per_label[self.current_classes, :count], axis=1) / count
thresholds = self.args.gamma*(average_accs - inf_acc) / average_accs
thresholds = self.tanh(torch.tensor(thresholds)).tolist()
thresholds = [round(t,2) if t>self.args.thre else self.args.thre for t in thresholds]
print(f"Thresholds for class {self.current_classes[0]}~{self.current_classes[-1]} : {thresholds}")
labels_to_be_added = self.detect_labels_to_be_added(inf_acc, thresholds)
if len(labels_to_be_added) > 0: #! Add node to the classifier if needed
new_head = self.set_new_head(model, labels_to_be_added,task_id).to(device)
model.head = new_head
optimizer = create_optimizer(args, model)
with torch.no_grad():
prev_adapters = model.get_adapter()
self.prev_adapters = self.flatten_parameters(prev_adapters)
self.prev_adapters.requires_grad=False
if task_id==0:
self.task_type_list.append("Initial")
return model, optimizer
prev_class = self.class_mask[task_id-1]
prev_domain = self.domain_list[task_id-1]
cur_class = self.class_mask[task_id]
self.cur_domain = self.domain_list[task_id]
if prev_class == cur_class:
self.task_type = "DIL"
else:
self.task_type = "CIL"
self.task_type_list.append(self.task_type)
print(f"Current task : {self.task_type}")
return model, optimizer
def post_train_task(self,model: torch.nn.Module,task_id=-1):
#! update classifier pool
self.class_group_train_count[self.current_class_group]+=1
self.classifier_pool[self.current_class_group]=copy.deepcopy(model.head)
for c in self.classifier_pool:
if c != None:
for p in c.parameters():
p.requires_grad=False
cur_adapters = model.get_adapter()
self.cur_adapters = self.flatten_parameters(cur_adapters)
vector=self.cur_adapters - self.prev_adapters
# if task_id>0: #? 1
self.adapter_vec.append(vector)
self.adapter_vec_label.append(self.task_type)
self.cluster_adapters()
def train_and_evaluate(self, model: torch.nn.Module, criterion, data_loader: Iterable, optimizer: torch.optim.Optimizer,
lr_scheduler, device: torch.device, class_mask=None, args = None,):
# create matrix to save end-of-task accuracies
acc_matrix = np.zeros((args.num_tasks, args.num_tasks))
ema_model = None
for task_id in range(args.num_tasks):
# Create new optimizer for each task to clear optimizer status
if task_id > 0 and args.reinit_optimizer:
optimizer = create_optimizer(args, model)
if task_id == 1 and len(args.adapt_blocks) > 0:
# ema_model = ModelEmaV2(model.adapter, decay=args.ema_decay).to(device)
ema_model = ModelEmaV2(model.get_adapter(), decay=args.ema_decay, device=device)
model, optimizer = self.pre_train_task(model, data_loader[task_id]['train'], device, task_id,args)
for epoch in range(args.epochs):
model = self.pre_train_epoch(model=model, epoch=epoch, task_id=task_id, args=args,)
train_stats = self.train_one_epoch(model=model, criterion=criterion,
data_loader=data_loader[task_id]['train'], optimizer=optimizer,
device=device, epoch=epoch, max_norm=args.clip_grad,
set_training_mode=True, task_id=task_id, class_mask=class_mask, ema_model=ema_model, args=args,)
if lr_scheduler:
lr_scheduler.step(epoch)
self.post_train_task(model,task_id=task_id)
if self.args.d_threshold:
self.label_train_count[self.current_classes] += 1
test_stats = self.evaluate_till_now(model=model, data_loader=data_loader, device=device,
task_id=task_id, class_mask=class_mask, acc_matrix=acc_matrix, ema_model=ema_model, args=args)
if args.output_dir and utils.is_main_process():
Path(os.path.join(args.output_dir, 'checkpoint')).mkdir(parents=True, exist_ok=True)
checkpoint_path = os.path.join(args.output_dir, 'checkpoint/task{}_checkpoint.pth'.format(task_id+1))
state_dict = {
'model': model.state_dict(),
'ema_model': ema_model.state_dict() if ema_model is not None else None,
'optimizer': optimizer.state_dict(),
'epoch': epoch,
'args': args,
}
if args.sched is not None and args.sched != 'constant':
state_dict['lr_scheduler'] = lr_scheduler.state_dict()
utils.save_on_master(state_dict, checkpoint_path)
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
**{f'test_{k}': v for k, v in test_stats.items()},
'epoch': epoch,}
if args.output_dir and utils.is_main_process():
with open(os.path.join(args.output_dir, '{}_stats.txt'.format(datetime.datetime.now().strftime('log_%Y_%m_%d_%H_%M'))), 'a') as f:
f.write(json.dumps(log_stats) + '\n')