|
| 1 | +import nltk |
| 2 | +from nltk.stem.lancaster import LancasterStemmer |
| 3 | +import numpy as np |
| 4 | +import tflearn |
| 5 | +import tensorflow as tf |
| 6 | +import random |
| 7 | +import json |
| 8 | +import pickle |
| 9 | +import os |
| 10 | + |
| 11 | +# nltk.download('punkt') |
| 12 | +steamer = LancasterStemmer() |
| 13 | + |
| 14 | +with open("intents.json") as file: |
| 15 | + data = json.load(file) |
| 16 | + |
| 17 | +if os.path.exists("data.pickle"): |
| 18 | + with open("data.pickle", "rb") as file: |
| 19 | + words, labels, training, output = pickle.load(file) |
| 20 | +else: |
| 21 | + words = [] |
| 22 | + labels = [] |
| 23 | + docs_x = [] |
| 24 | + docs_y = [] |
| 25 | + |
| 26 | + for intent in data["intents"]: |
| 27 | + for pattern in intent["patterns"]: |
| 28 | + word_list = nltk.word_tokenize(pattern) |
| 29 | + words.extend(word_list) |
| 30 | + docs_x.append(word_list) |
| 31 | + docs_y.append(intent["tag"]) |
| 32 | + |
| 33 | + if intent["tag"] not in labels: |
| 34 | + labels.append(intent["tag"]) |
| 35 | + |
| 36 | + words = [steamer.stem(w.lower()) for w in words if w != "?"] |
| 37 | + words = sorted(list(set(words))) |
| 38 | + |
| 39 | + labels = sorted(labels) |
| 40 | + |
| 41 | + training = [] |
| 42 | + output = [] |
| 43 | + |
| 44 | + out_empty = [0 for _ in labels] |
| 45 | + |
| 46 | + for x, doc in enumerate(docs_x): |
| 47 | + bag = [] |
| 48 | + |
| 49 | + word_list = [steamer.stem(w) for w in doc] |
| 50 | + |
| 51 | + for w in words: |
| 52 | + if w in word_list: |
| 53 | + bag.append(1) |
| 54 | + else: |
| 55 | + bag.append(0) |
| 56 | + |
| 57 | + output_row = out_empty[:] |
| 58 | + output_row[labels.index(docs_y[x])] = 1 |
| 59 | + |
| 60 | + training.append(bag) |
| 61 | + output.append(output_row) |
| 62 | + |
| 63 | + training = np.array(training) |
| 64 | + output = np.array(output) |
| 65 | + |
| 66 | + with open("data.pickle", "wb") as file: |
| 67 | + pickle.dump((words, labels, training, output), file) |
| 68 | + |
| 69 | +tf.compat.v1.reset_default_graph() |
| 70 | + |
| 71 | +net = tflearn.input_data(shape=[None, len(training[0])]) |
| 72 | +net = tflearn.fully_connected(net, 8) |
| 73 | +net = tflearn.fully_connected(net, 8) |
| 74 | +net = tflearn.fully_connected(net, len(output[0]), activation="softmax") |
| 75 | +net = tflearn.regression(net) |
| 76 | + |
| 77 | +model = tflearn.DNN(net) |
| 78 | +if os.path.exists("model.tflearn.meta"): |
| 79 | + model.load("model.tflearn") |
| 80 | +else: |
| 81 | + model.fit(training, output, n_epoch=1000, batch_size=8, show_metric=True) |
| 82 | + model.save("model.tflearn") |
| 83 | + |
| 84 | + |
| 85 | +def bag_of_words(sentence, words_list): |
| 86 | + bag_words = [0 for _ in words_list] |
| 87 | + |
| 88 | + s_words = nltk.word_tokenize(sentence) |
| 89 | + s_words = [steamer.stem(word.lower()) for word in s_words] |
| 90 | + |
| 91 | + for se in s_words: |
| 92 | + for i, w in enumerate(words_list): |
| 93 | + if w == se: |
| 94 | + bag_words[i] = 1 |
| 95 | + |
| 96 | + return np.array(bag_words) |
| 97 | + |
| 98 | + |
| 99 | +def chat(): |
| 100 | + print("Start talking") |
| 101 | + while True: |
| 102 | + inp = input("You: ") |
| 103 | + if inp.lower() == "quit": |
| 104 | + break |
| 105 | + |
| 106 | + result = model.predict([bag_of_words(inp, words)])[0] |
| 107 | + result_index = np.argmax(result) |
| 108 | + |
| 109 | + if result[result_index] > 0.8: |
| 110 | + label = labels[result_index] |
| 111 | + |
| 112 | + responses = [] |
| 113 | + for tag in data["intents"]: |
| 114 | + if tag["tag"] == label: |
| 115 | + responses = tag["responses"] |
| 116 | + print(random.choice(responses)) |
| 117 | + else: |
| 118 | + print("I don't quite understand. Please ask a different question") |
| 119 | + |
| 120 | + |
| 121 | +chat() |
0 commit comments