-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathodir_runner.py
62 lines (55 loc) · 2.45 KB
/
odir_runner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
# Copyright 2019-2020 Jordi Corbilla. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
from absl import app
import logging
import logging.config
import time
from odir_training_data_parser import DataParser
def main(argv):
# Path to the annotation data
file = r'dataset\ODIR-5K_Training_Annotations(Updated)_V2.xlsx'
# Produce all the patient information and store it in an dictionary
start = time.time()
logger.debug('Produce all the patient information and store it in an dictionary')
parser = DataParser(file, 'Sheet1')
logger.debug('File ' + file + ' parsed successfully!')
logger.debug('Excel to Patients DTO')
patients = parser.generate_patients()
logger.debug('Excel to Patients DTO Finished')
# Additional quality check, can be commented out
logger.debug('Ensuring Training Data Quality')
parser.check_data_quality()
logger.debug('Ensuring Training Data Quality Finished')
# Additional CSV Generation
logger.debug('Ensuring CSV generation')
parser.generate_ground_truth_csv()
logger.debug('Ensuring CSV generation Finished')
# Additional CSV for single class labelling
logger.debug('Ensuring CSV generation')
parser.generate_ground_truth_class_csv()
logger.debug('Ensuring CSV generation Finished')
# Transform patients into TFRecord (from the treated images folder)
images_path = r'C:\temp\ODIR-5K_Training_Dataset_treated'
# With treated images we reduce the TFRecord size from 91,117,187,072 bytes
# to 98,721,792 bytes, 99.89% reduction
#generator = GenerateTFRecord(images_path)
#generator.patients_to_tfrecord(patients, 'images.tfrecord')
end = time.time()
logger.debug('All Done in ' + str(end - start) + ' seconds')
if __name__ == '__main__':
# create logger
logging.config.fileConfig('logging.conf')
logger = logging.getLogger('odir')
app.run(main)