-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathdataset_statistics.py
456 lines (401 loc) · 16.5 KB
/
dataset_statistics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
from utils.dataset import *
from utils.args import process_args
import pdb
import networkx as nx
import matplotlib.pyplot as plt
# from models.TKG_VRE import VKG_VAE
def stringtify_graph_nodes_edges(graph, id2ent, id2rel):
node_lables = [id2ent[n] for n in graph.nodes]
edge_labels = {}
for x in graph.edges:
rel_id = graph.edges[x]['type_s'].item()
# pdb.set_trace()
edge_labels[x] = id2rel[rel_id]
return node_lables, edge_labels
def calc_num_edges_statistics_for_t(graph):
print("Number of nodes: {}".format(len(graph.nodes)))
degrees = list(dict(graph.in_degree()).values())
plt.hist(degrees, bins=np.max(degrees) - np.min(degrees))
plt.xlabel("degree per entity")
plt.ylabel("# entities")
plt.savefig(os.path.join(fig_path, "degree_per_entity.png"))
plt.clf()
def calc_num_facts_per_rel(graph):
rel_count = {}
for x in graph.edges:
rel_id = min(graph.edges[x]['type_s'].item(), graph.edges[x]['type_o'].item())
try:
rel_count[rel_id] += 1
except:
rel_count[rel_id] = 1
print("Number of relations: {}".format(len(rel_count.keys())))
print("Number of edges: {}".format(len(graph.edges)))
rel_counts = list(rel_count.values())
plt.hist(rel_counts, bins=np.max(rel_counts) - np.min(rel_counts))
plt.savefig(os.path.join(fig_path, "num_facts_per_rel.png"))
plt.clf()
def calc_hist(graphs, id2ent, id2rel, stringtify=False):
# construct a dict edges -> relation type
edges_hist = defaultdict(list)
for t, graph in enumerate(graphs):
for u,v in graph.edges:
rel_id = graph.edges[u,v]['type_s'].item()
u_id = graph.nodes[u]['id'].item()
v_id = graph.nodes[v]['id'].item()
if rel_id >= num_rels:
continue
if stringtify:
u_string = id2ent[u_id]
v_string = id2ent[v_id]
rel_id = id2rel[rel_id]
edges_hist[(u_id, v_id)].append((t, rel_id))
return edges_hist
def plot_rel_over_time(edges_hist):
# edge_stats = {}
mutate_intervals = []
repeat_intervals = []
num_rel_types = []
hist_events = []
for edge, hist in edges_hist.items():
# print(edge)
# print(hist)
# head = id2ent[edge[0]]
# tail = id2ent[edge[1]]
# rel_set = [id2rel[rel] for t, rel in hist]
prev_rel = -1
prev_t = -1
mutate_invertal = []
repeat_invertal = []
rels = []
for t, rel in hist:
rels.append(rel)
if prev_t == -1:
prev_t = t; prev_rel = rel
continue
if rel != prev_rel:
mutate_invertal.append(t - prev_t)
else:
repeat_invertal.append(t - prev_t)
prev_t = t; prev_rel = rel
rels = list(set(rels))
hist_events.append(len(hist))
num_rel_types.append(len(rels))
mutate_intervals.extend(mutate_invertal)
repeat_intervals.extend(repeat_invertal)
# edge_stats[edge] = [mutate_invertal, repeat_invertal, rels]
# pdb.set_trace()
plt.hist(mutate_intervals, bins=np.max(mutate_intervals) - np.min(mutate_intervals))
plt.xlabel("mutate intervals")
plt.ylabel("# intervals")
plt.savefig(os.path.join(fig_path, "rel_mutation_interval.png"))
plt.clf()
plt.hist(repeat_intervals, bins=np.max(repeat_intervals) - np.min(repeat_intervals))
plt.xlabel("repeat intervals")
plt.ylabel("# intervals")
plt.savefig(os.path.join(fig_path, "rel_repeat_interval.png"))
plt.clf()
plt.hist(hist_events, bins=np.max(hist_events) - np.min(hist_events))
plt.xlabel("hist events")
plt.ylabel("# entity pairs")
plt.savefig(os.path.join(fig_path, "num_hist_event_per_ent_pair.png"))
plt.clf()
plt.hist(num_rel_types, bins=np.max(num_rel_types) - np.min(num_rel_types))
plt.xlabel("relation types")
plt.ylabel("# entity pairs")
plt.savefig(os.path.join(fig_path, "num_hist_rel_types_per_ent_pair.png"))
plt.clf()
def plot_node_edge_change_over_time():
last_nodes = None
last_edges = None
entity_births = []
entity_deaths = []
entity_commons = []
edge_births = []
edge_deaths = []
edge_commons = []
new_subject_to_edge_count = defaultdict(int)
new_object_to_edge_count = defaultdict(int)
total_set = set()
num_new_nodes = []
k_ks = []
u_ks = []
u_us = []
all_train_edges = set()
for i in times:
train_graph = nx_train_graphs[i]
val_graph = nx_val_graphs[i]
test_graph = nx_test_graphs[i]
node_idx = set([train_graph.nodes[n]['id'].item() for n in train_graph.nodes])
new_nodes = node_idx.difference(total_set)
total_set = total_set | new_nodes
num_new_nodes.append(len(new_nodes))
cur_train_edges = []
cur_val_edges = []
nodes_from_edges = set()
for u, v in train_graph.edges:
rel_id = train_graph.edges[u, v]['type_s'].item()
u_id = train_graph.nodes[u]['id'].item()
v_id = train_graph.nodes[v]['id'].item()
nodes_from_edges.add(u_id)
nodes_from_edges.add(v_id)
cur_train_edges.append((u_id, rel_id, v_id))
all_train_edges.add((u_id, rel_id, v_id))
if u_id in new_nodes:
new_subject_to_edge_count[u_id] += 1
if v_id in new_nodes:
new_object_to_edge_count[v_id] += 1
k_k = u_k = u_u = 0
for u, v in val_graph.edges:
rel_id = val_graph.edges[u, v]['type_s'].item()
u_id = val_graph.nodes[u]['id'].item()
v_id = val_graph.nodes[v]['id'].item()
cur_val_edges.append((u_id, rel_id, v_id))
u_unknown = u_id in new_nodes
v_unknown = v_id in new_nodes
if u_unknown and v_unknown:
u_u += 1
elif u_unknown or v_unknown:
u_k += 1
else:
k_k += 1
u_us.append(u_u)
u_ks.append(u_k)
k_ks.append(k_k)
cur_train_edges = set(cur_train_edges)
cur_val_edges = set(cur_val_edges)
nodes_without_train_edges = new_nodes.difference(nodes_from_edges)
# print(len(nodes_without_train_edges))
# if len(nodes_without_train_edges) > 0:
# pdb.set_trace()
for n in nodes_without_train_edges:
new_subject_to_edge_count[n] = new_object_to_edge_count[n] = 0
if last_edges:
#train
common = cur_train_edges.intersection(last_edges)
edge_births.append(len(cur_train_edges) - len(common))
edge_deaths.append(len(last_edges) - len(common))
# common = cur_val_edges.intersection(all_train_edges)
# edge_births.append(len(cur_val_edges) - len(common))
edge_commons.append(len(common))
else:
edge_commons.append(0)
edge_births.append(len(cur_train_edges))
# edge_births.append(len(cur_val_edges))
if last_nodes:
common = node_idx.intersection(last_nodes)
entity_deaths.append(len(last_nodes) - len(common))
entity_births.append(len(node_idx) - len(common))
entity_commons.append(len(common))
else:
entity_commons.append(0)
entity_births.append(len(node_idx))
last_edges = cur_train_edges
last_nodes = node_idx
# subject_freq_to_count = defaultdict(int)
# object_freq_to_count = defaultdict(int)
# for eid, freq in new_subject_to_edge_count.items():
# subject_freq_to_count[freq] += 1
# for eid, freq in new_object_to_edge_count.items():
# object_freq_to_count[freq] += 1
# subject_freq_to_count = {k: v for k, v in sorted(subject_freq_to_count.items(), key=lambda item: item[0])}
# object_freq_to_count = {k: v for k, v in sorted(object_freq_to_count.items(), key=lambda item: item[0])}
print("Entity births: {}".format(entity_births))
print("Avg number of entity births after time 1: {}".format(np.mean(entity_births[1:])))
print("Avg number of entity deletion before last time: {}".format(np.mean(entity_deaths[:-1])))
print("edges births: {}".format(edge_births))
print("Avg number of edges births after time 1: {}".format(np.mean(edge_births[1:])))
print("Avg number of edges deletion before last time: {}".format(np.mean(edge_deaths[:-1])))
# exit()
# plt.figure(figsize=(3, 9/4), dpi=400, facecolor='w', edgecolor='k')
plt.plot(entity_commons, label='# entities in common with t - 1')
plt.plot(entity_births, label='# entities added to t - 1')
plt.plot(entity_deaths, label='# entities deleted at t + 1')
plt.plot(num_new_nodes, label='# new entities')
plt.legend()
plt.xlabel("time t")
plt.ylabel("# entities")
plt.savefig(os.path.join(fig_path, "entity_statistics.png"))
plt.clf()
plt.plot(np.array(edge_commons) + np.array(edge_births), label='# facts at time step t')
# plt.plot(edge_commons, label='# edges in common with t - 1')
plt.plot(edge_commons, label='# facts in common with t')
plt.plot(edge_births, label='# facts added to t - 1')
# plt.plot(edge_deaths, label='# facts deleted at t + 1')
plt.legend()
plt.xlabel("time step index")
plt.ylabel("# facts")
plt.savefig(os.path.join(fig_path, "edge_statistics.png"))
plt.clf()
plt.plot(k_ks, label='# both entities are known')
plt.plot(u_ks, label='# one entity is known')
plt.plot(u_us, label='# both entities are unknown')
sum_kk = np.sum(k_ks)
sum_uk = np.sum(u_ks)
sum_uu = np.sum(u_us)
sum_all = sum_kk + sum_uk + sum_uu
print(sum_kk / sum_all)
print(sum_uk / sum_all)
print(sum_uu / sum_all)
plt.legend()
plt.xlabel("time t")
plt.ylabel("# validation edges")
plt.savefig(os.path.join(fig_path, "val_edge_statistics.png"))
plt.clf()
# plt.scatter(list(subject_freq_to_count.keys()), list(subject_freq_to_count.values()), label='new entity is subject')
# plt.scatter(list(object_freq_to_count.keys()), list(object_freq_to_count.values()), label='new entity is object')
# pdb.set_trace()
subject_freq = list(new_subject_to_edge_count.values())
object_freq = list(new_object_to_edge_count.values())
plt.hist(subject_freq, bins=max(subject_freq), label='new entity is subject')
plt.hist(object_freq, bins=max(object_freq), label='new entity is object')
# print(subject_freq_to_count)
# print(object_freq_to_count)
plt.legend()
plt.xlabel("number of new edges with new entity")
plt.ylabel("number of entities")
plt.savefig(os.path.join(fig_path, "new_entity_statistics.png"))
plt.clf()
def plot_tail_change_over_time(graphs, stringtify=False):
# construct a dict edges -> relation type
head_rel_hist = defaultdict(list)
for t, graph in enumerate(graphs):
for u, v in graph.edges:
rel_id = graph.edges[u,v]['type_s'].item()
u_id = graph.nodes[u]['id'].item()
v_id = graph.nodes[v]['id'].item()
if rel_id >= num_rels:
continue
if stringtify:
u_string = id2ent[u_id]
v_string = id2ent[v_id]
rel_string = id2rel[rel_id]
head_rel_hist[(u_id, rel_id)].append((t, v_id))
mutate_intervals = []
concurrents = []
repeat_intervals = []
num_rel_types = []
hist_events = []
for head_rel, hist in head_rel_hist.items():
# print(head_rel)
# print(hist)
# pdb.set_trace()
prev_tail = -1
prev_t = -1
mutate_invertal = []
repeat_invertal = []
tails = []
concurrent = 0
for t, tail in hist:
tails.append(tail)
if prev_t == -1:
prev_t = t; prev_tail = tail
continue
if prev_t != t:
if tail != prev_tail:
mutate_invertal.append(t - prev_t)
else:
repeat_invertal.append(t - prev_t)
else:
concurrent += 1
prev_t = t; prev_tail = tail
concurrents.append(concurrent)
tails = list(set(tails))
hist_events.append(len(hist))
num_rel_types.append(len(tails))
mutate_intervals.extend(mutate_invertal)
repeat_intervals.extend(repeat_invertal)
plt.hist(mutate_intervals, bins=np.max(mutate_intervals) - np.min(mutate_intervals))
plt.xlabel("mutate intervals")
plt.ylabel("# intervals")
plt.savefig(os.path.join(fig_path, "tail_mutate_interval.png"))
plt.clf()
plt.hist(repeat_intervals, bins=np.max(repeat_intervals) - np.min(repeat_intervals) + 1)
plt.hist(repeat_intervals)
plt.xlabel("repeat intervals")
plt.ylabel("# intervals")
plt.savefig(os.path.join(fig_path, "tail_repeate_interval.png"))
plt.clf()
plt.hist(concurrents, bins=np.max(concurrents) - np.min(concurrents))
plt.xlabel("# concurrent events")
plt.ylabel("# head-rel pairs")
plt.savefig(os.path.join(fig_path, "num_concurrent_events_per_head_rel.png"))
plt.clf()
plt.hist(hist_events, bins=np.max(hist_events) - np.min(hist_events))
plt.xlabel("# hist events")
plt.ylabel("# head-rel pairs")
plt.savefig(os.path.join(fig_path, "num_hist_events_per_head_rel.png"))
plt.clf()
plt.hist(num_rel_types, bins=np.max(num_rel_types) - np.min(num_rel_types))
plt.xlabel("# tail types")
plt.ylabel("# head-rel pairs")
plt.savefig(os.path.join(fig_path, "num_tail_types_per_head_rel.png"))
plt.clf()
def plot_num_facts_nodes_over_time(graphs):
num_nodes = []
num_facts = []
for graph in graphs:
num_nodes.append((len(list(graph.nodes))))
num_facts.append((len(list(graph.edges))))
plt.plot(num_nodes)
plt.xlabel("time")
plt.ylabel("# nodes")
plt.savefig(os.path.join(fig_path, "num_nodes_over_time.png"))
plt.clf()
plt.plot(num_facts)
plt.xlabel("time")
plt.ylabel("# facts")
plt.savefig(os.path.join(fig_path, "num_edges_over_time.png"))
plt.clf()
def draw_graphs():
# print(nx_graphs)
graph = nx_train_graphs[0].subgraph(list(nx_train_graphs[0].nodes)[:100])
node_lables, edge_labels = stringtify_graph_nodes_edges(graph, id2ent, id2rel)
print("Nodes: {}".format(node_lables))
pos = nx.spring_layout(graph)
nx.draw_networkx_nodes(graph, pos, node_size=10)
# nx.draw_networkx_labels(graph, pos, dict(zip(pos, node_lables)))
nx.draw_networkx_edges(graph, pos, alpha=0.5)
nx.draw_networkx_edge_labels(graph, pos, edge_labels=edge_labels)
plt.show()
# def get_all_nodes():
# total_set = set()
# for i in times:
# train_graph = nx_train_graphs[i]
# val_graph = nx_val_graphs[i]
# test_graph = nx_test_graphs[i]
#
# train_node_idx = set([train_graph.nodes[n]['id'].item() for n in train_graph.nodes])
# val_node_idx = set([train_graph.nodes[n]['id'].item() for n in val_graph.nodes])
# test_node_idx = set([train_graph.nodes[n]['id'].item() for n in test_graph.nodes])
# node_idx = train_node_idx | val_node_idx | test_node_idx
#
# total_set = total_set | node_idx
# pdb.set_trace()
if __name__ == '__main__':
args = process_args()
train_data, train_times = load_quadruples(args.dataset, 'train.txt')
max_time_step = len(train_times)
num_ents, num_rels = get_total_number(args.dataset, 'stat.txt')
id2ent, id2rel = id2entrel(args.dataset, num_rels)
# id2ent = id2rel = None
train_graph_dict, val_graph_dict, test_graph_dict = build_interpolation_graphs(args)
times = list(train_graph_dict.keys())
nx_train_graphs = [train_graph_dict[i].to_networkx(edge_attrs=['type_s'], node_attrs=['id']) for i in times]
nx_val_graphs = [val_graph_dict[i].to_networkx(edge_attrs=['type_s'], node_attrs=['id']) for i in times]
nx_test_graphs = [test_graph_dict[i].to_networkx(edge_attrs=['type_s'], node_attrs=['id']) for i in times]
# draw_graphs()
# exit()
fig_path = os.path.join('figs', args.dataset_dir + "_" + args.dataset.split('/')[-1])
# import pdb; pdb.set_trace()
if not os.path.exists(fig_path):
os.makedirs(fig_path)
# plot_num_facts_nodes_over_time(nx_graphs)
# plot_tail_change_over_time(nx_graphs, False)
plot_node_edge_change_over_time()
# edges_hist = calc_hist(nx_graphs, id2ent, id2rel, False)
# plot_rel_over_time(edges_hist)
# pdb.set_trace()
#
# for graph in nx_graphs:
# calc_num_edges_statistics_for_t(graph)
# calc_num_facts_per_rel(graph)