-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmyplot.R
34 lines (24 loc) · 1.2 KB
/
myplot.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
myplot = function() {
#obs <<- distances[which(distances$SPEAKER==sp & distances$FEATURE.NAME==featureNames[featureID]),"FEATURE.VALUE"]
#pop <<- distances[which(distances$SPEAKER %in% pop_n & distances$FEATURE.NAME==featureNames[featureID]),"FEATURE.VALUE"]
#
#obs.avg = mean(obs, na.rm=T)
#
#fit = bestFit(pop)
#p_obs = getFitImage(fit, obs.avg)
pop_acc = distances[which(distances$SPEAKER %in% bg_acc.names & distances$FEATURE.NAME==featureNames[featureID]),"FEATURE.VALUE"]
pop_null = distances[which(distances$SPEAKER %in% bg_null.names & distances$FEATURE.NAME==featureNames[featureID]),"FEATURE.VALUE"]
pop_acc.d = density(pop_acc, na.rm = T)
pop_null.d = density(pop_null, na.rm = T)
plot(pop_acc.d, xlim=c(0.1, 1.45), ylim=c(0, 3), col="light blue")
par(new=T)
curve(dgamma(x, shape=14.69572, scale=0.03597472), xlim=c(0.1, 1.45), ylim=c(0, 3), col="blue")
par(new=T)
plot(pop_null.d, xlim=c(0.1, 1.45), ylim=c(0, 3), col="orange")
par(new=T)
curve(dgamma(x, shape=7.241072, scale=0.139504), xlim=c(0.1, 1.45), ylim=c(0, 3), col="red")
obs.avg = mean(obs, na.rm=T)
acc.avg = mean(pop_acc, na.rm=T)
null.avg = mean(pop_null, na.rm=T)
par(new=T)
}