-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrainval.py
254 lines (208 loc) · 8.54 KB
/
trainval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import torch
import torchvision
import tqdm
import pandas as pd
import pprint
import math
import itertools
import os
import sys
import pylab as plt
import exp_configs
import time
import numpy as np
import torch.nn as nn
from src import models
from src import datasets
from src import optimizers
from src import utils as ut
from src import metrics
import argparse
from torch.backends import cudnn
from torch.nn import functional as F
from torch.utils.data import DataLoader
from torch.utils.data.sampler import RandomSampler
from torch.utils.data.dataloader import default_collate
# cudnn.benchmark = True
from haven import haven_utils as hu
from haven import haven_results as hr
# from haven import haven_dropbox as hd
from haven import haven_chk as hc
import shutil
import pprint
def trainval(exp_dict, savedir_base, reset, metrics_flag=True, datadir=None, use_cuda=False):
# bookkeeping
# ---------------
# get experiment directory
exp_id = hu.hash_dict(exp_dict)
savedir = os.path.join(savedir_base, exp_id)
if reset:
# delete and backup experiment
hc.delete_experiment(savedir, backup_flag=True)
# create folder and save the experiment dictionary
os.makedirs(savedir, exist_ok=True)
hu.save_json(os.path.join(savedir, 'exp_dict.json'), exp_dict)
print(pprint.pprint(exp_dict))
print('Experiment saved in %s' % savedir)
# set seed
# ==================
seed = 42 + exp_dict['runs']
np.random.seed(seed)
torch.manual_seed(seed)
if use_cuda:
device = 'cuda'
torch.cuda.manual_seed_all(seed)
assert torch.cuda.is_available(), 'cuda is not, available please run with "-c 0"'
else:
device = 'cpu'
print('Running on device: %s' % device)
# Dataset
# ==================
train_set = datasets.get_dataset(dataset_name=exp_dict["dataset"],
train_flag=True,
datadir=datadir,
exp_dict=exp_dict)
train_loader = DataLoader(train_set,
drop_last=True,
shuffle=True,
sampler=None,
batch_size=exp_dict["batch_size"])
# Load Val Dataset
val_set = datasets.get_dataset(dataset_name=exp_dict["dataset"],
train_flag=False,
datadir=datadir,
exp_dict=exp_dict)
# Model
# ==================
model = models.get_model(exp_dict["model"],
train_set=train_set).to(device=device)
# Choose loss and metric function
loss_function = metrics.get_metric_function(exp_dict["loss_func"])
# Load Optimizer
# ==============
n_batches_per_epoch = len(train_set)/float(exp_dict["batch_size"])
opt = optimizers.get_optimizer(opt=exp_dict["opt"],
params=model.parameters(),
n_batches_per_epoch=n_batches_per_epoch,
n_train=len(train_set),
train_loader=train_loader,
model=model,
loss_function=loss_function,
exp_dict=exp_dict,
batch_size=exp_dict["batch_size"])
# Checkpointing
# =============
score_list_path = os.path.join(savedir, "score_list.pkl")
model_path = os.path.join(savedir, "model_state_dict.pth")
opt_path = os.path.join(savedir, "opt_state_dict.pth")
if os.path.exists(score_list_path) and os.path.exists(model_path):
# resume experiment
score_list = ut.load_pkl(score_list_path)
model.load_state_dict(torch.load(model_path))
opt.load_state_dict(torch.load(opt_path))
s_epoch = score_list[-1]["epoch"] + 1
else:
# restart experiment
score_list = []
s_epoch = 0
# Start Training
# ==============
n_train = len(train_loader.dataset)
n_batches = len(train_loader)
batch_size = train_loader.batch_size
for epoch in range(s_epoch, exp_dict["max_epoch"]):
# Set seed
seed = epoch + exp_dict['runs']
np.random.seed(seed)
torch.manual_seed(seed)
if use_cuda:
torch.cuda.manual_seed_all(seed)
score_dict = {"epoch": epoch}
# Validate
# --------
if metrics_flag:
# 1. Compute train loss over train set
score_dict["train_loss"] = metrics.compute_metric_on_dataset(model,
train_set,
metric_name=exp_dict["loss_func"],
batch_size=exp_dict['batch_size'])
# 2. Compute val acc over val set
score_dict["val_acc"] = metrics.compute_metric_on_dataset(model, val_set,
metric_name=exp_dict["acc_func"],
batch_size=exp_dict['batch_size'])
# Train
# -----
model.train()
print("%d - Training model with %s..." %
(epoch, exp_dict["loss_func"]))
s_time = time.time()
n_train = len(train_set)
for batch in tqdm.tqdm(train_loader):
opt.zero_grad()
opt_step(exp_dict['opt']['name'], opt, model, batch, loss_function, device=device)
e_time = time.time()
# Record step size and batch size
score_dict["step"] = opt.state.get(
"step", 0) / int(n_batches_per_epoch)
score_dict["step_size"] = opt.state.get("step_size", {})
score_dict["step_size_avg"] = opt.state.get("step_size_avg", {})
score_dict["n_forwards"] = opt.state.get("n_forwards", {})
score_dict["n_backwards"] = opt.state.get("n_backwards", {})
score_dict["grad_norm"] = opt.state.get("grad_norm", {})
score_dict["batch_size"] = batch_size
score_dict["train_epoch_time"] = e_time - s_time
score_dict.update(opt.state["gv_stats"])
# Add score_dict to score_list
score_list += [score_dict]
# Report and save
print(pd.DataFrame(score_list).tail())
ut.save_pkl(score_list_path, score_list)
ut.torch_save(model_path, model.state_dict())
ut.torch_save(opt_path, opt.state_dict())
print("Saved: %s" % savedir)
return score_list
def opt_step(name, opt, model, batch, loss_function, device):
indices = batch['meta']['indices']
images, labels = batch["images"].to(device), batch["labels"].to(device)
if (name in ["sgd_armijo", 'adaptive_first', 'l4', 'ali_g']):
closure = lambda : loss_function(model, images, labels, backwards=False)
loss = opt.step(closure)
elif (name in ['sps']):
closure = lambda : loss_function(model, images, labels, backwards=False)
loss = opt.step(closure, batch)
elif (name in ["adam", "adagrad", 'radam', 'plain_radam', 'adabound']):
loss = loss_function(model, images, labels)
loss.backward()
opt.step()
else:
raise ValueError('%s optimizer does not exist' % name)
return loss
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-e', '--exp_group_list', nargs='+')
parser.add_argument('-sb', '--savedir_base', required=True)
parser.add_argument('-d', '--datadir', required=True)
parser.add_argument('-r', '--reset', default=0, type=int)
parser.add_argument('-ei', '--exp_id', default=None)
parser.add_argument('-c', '--use_cuda', type=int, default=0)
args = parser.parse_args()
# Collect experiments
# -------------------
if args.exp_id is not None:
# select one experiment
savedir = os.path.join(args.savedir_base, args.exp_id)
exp_dict = hu.load_json(os.path.join(savedir, 'exp_dict.json'))
exp_list = [exp_dict]
else:
# select exp group
exp_list = []
for exp_group_name in args.exp_group_list:
exp_list += exp_configs.EXP_GROUPS[exp_group_name]
# run experiments
for exp_dict in exp_list:
# do trainval
trainval(exp_dict=exp_dict,
savedir_base=args.savedir_base,
reset=args.reset,
datadir=args.datadir,
use_cuda=args.use_cuda)