-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathSampler.py
231 lines (206 loc) · 8.06 KB
/
Sampler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import pandas as pd
import numpy as np
import random
import pickle
import time
def read_data(datafile, file_key, human=True, use_10x=True):
amino_acids = [letter for letter in 'ARNDCEQGHILKMFPSTWYV']
all_pairs = []
def invalid(seq):
return pd.isna(seq) or any([aa not in amino_acids for aa in seq])
if file_key == 'mcpas':
data = pd.read_csv(datafile, engine='python')
for index in range(len(data)):
sample = {}
sample['tcra'] = data['CDR3.alpha.aa'][index]
sample['tcrb'] = data['CDR3.beta.aa'][index]
sample['va'] = data['TRAV'][index]
sample['ja'] = data['TRAJ'][index]
sample['vb'] = data['TRBV'][index]
sample['jb'] = data['TRBJ'][index]
sample['t_cell_type'] = data['T.Cell.Type'][index]
sample['peptide'] = data['Epitope.peptide'][index]
sample['protein'] = data['Antigen.protein'][index]
sample['mhc'] = data['MHC'][index]
if invalid(sample['tcrb']) or invalid(sample['peptide']):
continue
if human and data['Species'][index] != 'Human':
continue
if invalid(sample['tcra']):
sample['tcra'] = 'UNK'
all_pairs.append(sample)
elif file_key == 'vdjdb':
data = pd.read_csv(datafile, engine='python', sep='\t')
# first read all TRB, then unite with TRA according to sample id
paired = {}
for index in range(len(data)):
sample = {}
id = int(data['complex.id'][index])
type = data['Gene'][index]
tcr = data['CDR3'][index]
if not use_10x and '10xgenomics' in data['Reference'][index]:
continue
if type == 'TRB':
sample['tcrb'] = tcr
sample['tcra'] = 'UNK'
sample['va'] = 'UNK'
sample['ja'] = 'UNK'
sample['vb'] = data['V'][index]
sample['jb'] = data['J'][index]
sample['peptide'] = data['Epitope'][index]
sample['protein'] = data['Epitope gene'][index]
sample['mhc'] = data['MHC A'][index]
# here it's mhc class
sample['t_cell_type'] = data['MHC class'][index]
if invalid(tcr) or invalid(sample['peptide']):
continue
# only TRB
if id == 0:
all_pairs.append(sample)
else:
paired[id] = sample
if type == 'TRA':
tcra = tcr
if invalid(tcra):
tcra = 'UNK'
sample = paired[id]
sample['va'] = data['V'][index]
sample['ja'] = data['J'][index]
sample['tcra'] = tcra
paired[id] = sample
all_pairs.extend(list(paired.values()))
# assimung each sample appears only once in the dataset
train_pairs, test_pairs = train_test_split(all_pairs)
return all_pairs, train_pairs, test_pairs
def train_test_split(all_pairs):
'''
Splitting the TCR-PEP pairs
'''
train_pairs = []
test_pairs = []
for pair in all_pairs:
# 80% train, 20% test
p = np.random.binomial(1, 0.8)
if p == 1:
train_pairs.append(pair)
else:
test_pairs.append(pair)
return train_pairs, test_pairs
def positive_examples(pairs):
pos_samples = []
for sample in pairs:
sample['sign'] = 1
pos_samples.append(sample)
return pos_samples
def negative_examples(pairs, all_pairs, size):
'''
Randomly creating intentional negative examples from the same pairs dataset.
We match randomly tcr data with peptide data to make a sample
'''
neg_samples = []
i = 0
while i < size:
# choose randomly two samples. match tcr data with pep data
pep_sample = random.choice(pairs)
tcr_sample = random.choice(pairs)
sample = {}
sample['tcra'] = tcr_sample['tcra']
sample['tcrb'] = tcr_sample['tcrb']
sample['va'] = tcr_sample['va']
sample['ja'] = tcr_sample['ja']
sample['vb'] = tcr_sample['vb']
sample['jb'] = tcr_sample['jb']
sample['t_cell_type'] = tcr_sample['t_cell_type']
sample['peptide'] = pep_sample['peptide']
sample['protein'] = pep_sample['protein']
sample['mhc'] = pep_sample['mhc']
if sample not in all_pairs and sample not in neg_samples:
sample['sign'] = 0
neg_samples.append(sample)
i += 1
return neg_samples
def get_examples(datafile, file_key, human, use_10x):
all_pairs, train_pairs, test_pairs = read_data(datafile, file_key, human, use_10x)
train_pos = positive_examples(train_pairs)
test_pos = positive_examples(test_pairs)
train_neg = negative_examples(train_pairs, all_pairs, 5 * len(train_pos))
test_neg = negative_examples(test_pairs, all_pairs, 5 * len(test_pos))
train = train_pos + train_neg
random.shuffle(train)
test = test_pos + test_neg
random.shuffle(test)
return train, test
def sample_data(datafile, file_key, train_file, test_file, human=False, use_10x=True):
train, test = get_examples(datafile, file_key, human, use_10x)
with open(str(train_file) + '.pickle', 'wb') as handle:
pickle.dump(train, handle)
with open(str(test_file) + '.pickle', 'wb') as handle:
pickle.dump(test, handle)
def sample():
# t1 = time.time()
# print('sampling human mcpas...')
# sample_data('data/McPAS-TCR.csv', 'mcpas', 'mcpas_human_train_samples', 'mcpas_human_test_samples', human=True)
# t2 = time.time()
# print('done in ' + str(t2 - t1) + ' seconds')
#
# t1 = time.time()
# print('sampling mcpas...')
# sample_data('data/McPAS-TCR.csv', 'mcpas', 'mcpas_train_samples', 'mcpas_test_samples', human=False)
# t2 = time.time()
# print('done in ' + str(t2 - t1) + ' seconds')
# t1 = time.time()
# print('sampling vdjdb...')
# sample_data('data/VDJDB_complete.tsv', 'vdjdb', 'vdjdb_no10x_train_samples', 'vdjdb_no10x_test_samples', use_10x=False)
# t2 = time.time()
# print('done in ' + str(t2 - t1) + ' seconds')
pass
def get_diabetes_peptides(datafile):
data = pd.read_csv(datafile, engine='python')
d_peps = set()
for index in range(len(data)):
peptide = data['Epitope.peptide'][index]
if pd.isna(peptide):
continue
pathology = data['Pathology'][index]
if pathology == 'Diabetes Type 1':
d_peps.add(peptide)
return d_peps
def frequent_peptides(datafile, key, k):
if key == 'mcpas':
data = pd.read_csv(datafile, engine='python')
freq_peps = data['Epitope.peptide'].value_counts()[:k].index.to_list()
elif key == 'vdjdb':
data = pd.read_csv(datafile, engine='python', sep='\t')
freq_peps = data['Epitope'].value_counts()[:k].index.to_list()
return freq_peps
def count_alpha_beta():
datafile = 'data/McPAS-TCR.csv'
data = pd.read_csv(datafile, engine='python')
freq_peps = data['Epitope.peptide'].value_counts()[:20].index.to_list()
has = []
mis = []
for pep in freq_peps:
pep_data = data[data['Epitope.peptide'] == pep]
pep_data = pep_data[~pd.isna(pep_data['CDR3.beta.aa'])]
has_alpha = len(pep_data[~pep_data['CDR3.alpha.aa'].apply(pd.isna)])
mis_alpha = len(pep_data[pep_data['CDR3.alpha.aa'].apply(pd.isna)])
assert has_alpha + mis_alpha == len(pep_data)
has.append(has_alpha)
mis.append(mis_alpha)
print(pep, has_alpha, mis_alpha)
df = pd.DataFrame()
df['peptide'] = freq_peps
df['has_alpha'] = has
df['mis_alpha'] = mis
df.to_csv('plots/alpha_beta_counts.csv', index=False)
def check():
with open('mcpas_human_train_samples.pickle', 'rb') as handle:
train = pickle.load(handle)
print(len(train))
print(random.choice(train))
pass
if __name__ == '__main__':
# sample()
# frequent_peptides()
# count_alpha_beta()
pass