-
Notifications
You must be signed in to change notification settings - Fork 94
/
Copy pathtrain.py
executable file
·242 lines (208 loc) · 10.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import argparse
import numpy as np
import time
import torch
import utils
import os
from model import RENet
from global_model import RENet_global
from sklearn.utils import shuffle
import pickle
def train(args):
# load data
num_nodes, num_rels = utils.get_total_number('./data/' + args.dataset, 'stat.txt')
if args.dataset == 'icews_know':
train_data, train_times = utils.load_quadruples('./data/' + args.dataset, 'train.txt')
valid_data, valid_times = utils.load_quadruples('./data/' + args.dataset, 'test.txt')
test_data, test_times = utils.load_quadruples('./data/' + args.dataset, 'test.txt')
total_data, total_times = utils.load_quadruples('./data/' + args.dataset, 'train.txt', 'test.txt')
else:
train_data, train_times = utils.load_quadruples('./data/' + args.dataset, 'train.txt')
valid_data, valid_times = utils.load_quadruples('./data/' + args.dataset, 'valid.txt')
test_data, test_times = utils.load_quadruples('./data/' + args.dataset, 'test.txt')
total_data, total_times = utils.load_quadruples('./data/' + args.dataset, 'train.txt', 'valid.txt','test.txt')
# check cuda
use_cuda = args.gpu >= 0 and torch.cuda.is_available()
seed = 999
np.random.seed(seed)
torch.manual_seed(seed)
if use_cuda:
torch.cuda.set_device(args.gpu)
os.makedirs('models', exist_ok=True)
os.makedirs('models/'+ args.dataset, exist_ok=True)
model_state_file = 'models/' + args.dataset + '/rgcn.pth'
model_graph_file = 'models/' + args.dataset + '/rgcn_graph.pth'
model_state_global_file2 = 'models/' + args.dataset + '/max' + str(args.maxpool) + 'rgcn_global2.pth'
model_state_global_file = 'models/' + args.dataset + '/max' + str(args.maxpool) + 'rgcn_global.pth'
model_state_file_backup = 'models/' + args.dataset + '/rgcn_backup.pth'
print("start training...")
model = RENet(num_nodes,
args.n_hidden,
num_rels,
dropout=args.dropout,
model=args.model,
seq_len=args.seq_len,
num_k=args.num_k)
global_model = RENet_global(num_nodes,
args.n_hidden,
num_rels,
dropout=args.dropout,
model=args.model,
seq_len=args.seq_len,
num_k=args.num_k, maxpool=args.maxpool)
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=0.00001)
checkpoint_global = torch.load(model_state_global_file, map_location=lambda storage, loc: storage)
global_model.load_state_dict(checkpoint_global['state_dict'])
global_emb = checkpoint_global['global_emb']
model.global_emb = global_emb
if use_cuda:
model.cuda()
global_model.cuda()
train_sub = '/train_history_sub.txt'
train_ob = '/train_history_ob.txt'
if args.dataset == 'icews_know':
valid_sub = '/test_history_sub.txt'
valid_ob = '/test_history_ob.txt'
else:
valid_sub = '/dev_history_sub.txt'
valid_ob = '/dev_history_ob.txt'
with open('./data/' + args.dataset+'/train_graphs.txt', 'rb') as f:
graph_dict = pickle.load(f)
model.graph_dict = graph_dict
with open('data/' + args.dataset+'/test_history_sub.txt', 'rb') as f:
s_history_test_data = pickle.load(f)
with open('data/' + args.dataset+'/test_history_ob.txt', 'rb') as f:
o_history_test_data = pickle.load(f)
s_history_test = s_history_test_data[0]
s_history_test_t = s_history_test_data[1]
o_history_test = o_history_test_data[0]
o_history_test_t = o_history_test_data[1]
with open('./data/' + args.dataset+train_sub, 'rb') as f:
s_history_data = pickle.load(f)
with open('./data/' + args.dataset+train_ob, 'rb') as f:
o_history_data = pickle.load(f)
with open('./data/' + args.dataset+valid_sub, 'rb') as f:
s_history_valid_data = pickle.load(f)
with open('./data/' + args.dataset+valid_ob, 'rb') as f:
o_history_valid_data = pickle.load(f)
valid_data = torch.from_numpy(valid_data)
s_history = s_history_data[0]
s_history_t = s_history_data[1]
o_history = o_history_data[0]
o_history_t = o_history_data[1]
s_history_valid = s_history_valid_data[0]
s_history_valid_t = s_history_valid_data[1]
o_history_valid = o_history_valid_data[0]
o_history_valid_t = o_history_valid_data[1]
total_data = torch.from_numpy(total_data)
if use_cuda:
total_data = total_data.cuda()
epoch = 0
best_mrr = 0
while True:
model.train()
if epoch == args.max_epochs:
break
epoch += 1
loss_epoch = 0
t0 = time.time()
train_data_shuffle, s_history_shuffle, s_history_t_shuffle, o_history_shuffle, o_history_t_shuffle = shuffle(train_data, s_history, s_history_t,
o_history, o_history_t)
for batch_data, s_hist, s_hist_t, o_hist, o_hist_t in utils.make_batch2(train_data_shuffle, s_history_shuffle, s_history_t_shuffle,
o_history_shuffle, o_history_t_shuffle, args.batch_size):
# break
batch_data = torch.from_numpy(batch_data).long()
if use_cuda:
batch_data = batch_data.cuda()
loss_s = model(batch_data, (s_hist, s_hist_t), (o_hist, o_hist_t), graph_dict, subject=True)
loss_o = model(batch_data, (s_hist, s_hist_t), (o_hist, o_hist_t), graph_dict, subject=False)
loss = loss_s + loss_o
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), args.grad_norm) # clip gradients
optimizer.step()
optimizer.zero_grad()
loss_epoch += loss.item()
t3 = time.time()
print("Epoch {:04d} | Loss {:.4f} | time {:.4f}".
format(epoch, loss_epoch/(len(train_data)/args.batch_size), t3 - t0))
if epoch % args.valid_every == 0 and epoch >= int(args.max_epochs/2):
model.eval()
global_model.eval()
total_loss = 0
total_ranks = np.array([])
model.init_history(train_data, (s_history, s_history_t), (o_history, o_history_t), valid_data,
(s_history_valid, s_history_valid_t), (o_history_valid, o_history_valid_t), test_data,
(s_history_test, s_history_test_t), (o_history_test, o_history_test_t))
model.latest_time = valid_data[0][3]
for i in range(len(valid_data)):
batch_data = valid_data[i]
s_hist = s_history_valid[i]
o_hist = o_history_valid[i]
s_hist_t = s_history_valid_t[i]
o_hist_t = o_history_valid_t[i]
if use_cuda:
batch_data = batch_data.cuda()
with torch.no_grad():
ranks, loss = model.evaluate_filter(batch_data, (s_hist, s_hist_t), (o_hist, o_hist_t), global_model, total_data)
total_ranks = np.concatenate((total_ranks, ranks))
total_loss += loss.item()
mrr = np.mean(1.0 / total_ranks)
mr = np.mean(total_ranks)
hits = []
for hit in [1, 3, 10]:
avg_count = np.mean((total_ranks <= hit))
hits.append(avg_count)
print("valid Hits (filtered) @ {}: {:.6f}".format(hit, avg_count))
print("valid MRR (filtered): {:.6f}".format(mrr))
print("valid MR (filtered): {:.6f}".format(mr))
print("valid Loss: {:.6f}".format(total_loss / (len(valid_data))))
if mrr > best_mrr:
best_mrr = mrr
torch.save({'state_dict': model.state_dict(), 'epoch': epoch,
's_hist': model.s_hist_test, 's_cache': model.s_his_cache,
'o_hist': model.o_hist_test, 'o_cache': model.o_his_cache,
's_hist_t': model.s_hist_test_t, 's_cache_t': model.s_his_cache_t,
'o_hist_t': model.o_hist_test_t, 'o_cache_t': model.o_his_cache_t,
'latest_time': model.latest_time, 'global_emb': model.global_emb},
model_state_file)
torch.save({'state_dict': global_model.state_dict(), 'epoch': epoch,
's_hist': model.s_hist_test, 's_cache': model.s_his_cache,
'o_hist': model.o_hist_test, 'o_cache': model.o_his_cache,
's_hist_t': model.s_hist_test_t, 's_cache_t': model.s_his_cache_t,
'o_hist_t': model.o_hist_test_t, 'o_cache_t': model.o_his_cache_t,
'latest_time': model.latest_time, 'global_emb': global_model.global_emb},
model_state_global_file2)
with open(model_graph_file, 'wb') as fp:
pickle.dump(model.graph_dict, fp)
print("training done")
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='RENet')
parser.add_argument("--dropout", type=float, default=0.5,
help="dropout probability")
parser.add_argument("--n-hidden", type=int, default=200,
help="number of hidden units")
parser.add_argument("--gpu", type=int, default=0,
help="gpu")
parser.add_argument("--lr", type=float, default=1e-3,
help="learning rate")
parser.add_argument("-d", "--dataset", type=str, default='ICEWS18',
help="dataset to use")
parser.add_argument("--grad-norm", type=float, default=1.0,
help="norm to clip gradient to")
parser.add_argument("--max-epochs", type=int, default=20
,
help="maximum epochs")
parser.add_argument("--model", type=int, default=0)
parser.add_argument("--seq-len", type=int, default=10)
parser.add_argument("--num-k", type=int, default=1000,
help="cuttoff position")
parser.add_argument("--batch-size", type=int, default=1024)
parser.add_argument("--rnn-layers", type=int, default=1)
parser.add_argument("--maxpool", type=int, default=1)
parser.add_argument('--backup', action='store_true')
parser.add_argument("--valid-every", type=int, default=1)
parser.add_argument('--valid', action='store_true')
parser.add_argument('--raw', action='store_true')
args = parser.parse_args()
print(args)
train(args)