-
Notifications
You must be signed in to change notification settings - Fork 47
/
Copy pathamici.py
656 lines (564 loc) · 22.3 KB
/
amici.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
from __future__ import annotations
import abc
import copy
import os
import tempfile
from collections import OrderedDict
from collections.abc import Sequence
from pathlib import Path
from typing import TYPE_CHECKING, Union
import numpy as np
from ...C import (
FVAL,
MODE_FUN,
MODE_RES,
RDATAS,
SUFFIXES_CSV,
SUFFIXES_HDF5,
ModeType,
)
from ...history import (
CountHistory,
CsvAmiciHistory,
Hdf5AmiciHistory,
HistoryOptions,
HistoryTypeError,
MemoryHistory,
)
from ..base import ObjectiveBase
from .amici_calculator import AmiciCalculator
from .amici_util import (
create_identity_parameter_mapping,
map_par_opt_to_par_sim,
)
if TYPE_CHECKING:
from ...hierarchical import InnerCalculatorCollector
try:
import amici
from amici.petab.parameter_mapping import ParameterMapping
except ImportError:
pass
AmiciModel = Union["amici.Model", "amici.ModelPtr"]
AmiciSolver = Union["amici.Solver", "amici.SolverPtr"]
class AmiciObjectBuilder(abc.ABC):
"""Allows to build AMICI model, solver, and edatas.
This class is useful for pickling an :class:`pypesto.AmiciObjective`,
which is required in some parallelization schemes. Therefore, this
class itself must be picklable.
"""
@abc.abstractmethod
def create_model(self) -> AmiciModel:
"""Create an AMICI model."""
@abc.abstractmethod
def create_solver(self, model: AmiciModel) -> AmiciSolver:
"""Create an AMICI solver."""
@abc.abstractmethod
def create_edatas(self, model: AmiciModel) -> Sequence[amici.ExpData]:
"""Create AMICI experimental data."""
class AmiciObjective(ObjectiveBase):
"""Allows to create an objective directly from an amici model."""
share_return_dict = True
def __init__(
self,
amici_model: AmiciModel,
amici_solver: AmiciSolver,
edatas: Sequence[amici.ExpData] | amici.ExpData,
max_sensi_order: int | None = None,
x_ids: Sequence[str] | None = None,
x_names: Sequence[str] | None = None,
parameter_mapping: ParameterMapping | None = None,
guess_steadystate: bool | None = None,
n_threads: int | None = 1,
fim_for_hess: bool | None = True,
amici_object_builder: AmiciObjectBuilder | None = None,
calculator: AmiciCalculator | InnerCalculatorCollector | None = None,
amici_reporting: amici.RDataReporting | None = None,
):
"""
Initialize objective.
Parameters
----------
amici_model:
The amici model.
amici_solver:
The solver to use for the numeric integration of the model.
edatas:
The experimental data. If a list is passed, its entries correspond
to multiple experimental conditions.
max_sensi_order:
Maximum sensitivity order supported by the model. Defaults to 2 if
the model was compiled with o2mode, otherwise 1.
x_ids:
Ids of optimization parameters. In the simplest case, this will be
the AMICI model parameters (default).
x_names:
Names of optimization parameters.
parameter_mapping:
Mapping of optimization parameters to model parameters. Format
as created by
`amici.petab.parameter_mapping.create_parameter_mapping`.
The default is just to assume that optimization and simulation
parameters coincide.
guess_steadystate:
Whether to guess steadystates based on previous steadystates and
respective derivatives. This option may lead to unexpected
results for models with conservation laws and should accordingly
be deactivated for those models.
n_threads:
Number of threads that are used for parallelization over
experimental conditions. If amici was not installed with openMP
support this option will have no effect.
fim_for_hess:
Whether to use the FIM whenever the Hessian is requested. This only
applies with forward sensitivities.
With adjoint sensitivities, the true Hessian will be used,
if available.
FIM or Hessian will only be exposed if `max_sensi_order>1`.
amici_object_builder:
AMICI object builder. Allows recreating the objective for
pickling, required in some parallelization schemes.
calculator:
Performs the actual calculation of the function values and
derivatives.
amici_reporting:
Determines which quantities will be computed by AMICI,
see ``amici.Solver.setReturnDataReportingMode``. Set to ``None``
to compute only the minimum required information.
"""
import amici
if amici is None:
raise ImportError(
"This objective requires an installation of amici "
"(https://github.com/icb-dcm/amici). "
"Install via `pip3 install amici`."
)
self.amici_model = amici_model.clone()
self.amici_solver = amici_solver.clone()
# make sure the edatas are a list of edata objects
if isinstance(edatas, amici.amici.ExpData):
edatas = [edatas]
# set the experimental data container
self.edatas = edatas
# set the maximum sensitivity order
self.max_sensi_order = max_sensi_order
self.guess_steadystate = guess_steadystate
# optimization parameter ids
if x_ids is None:
# use model parameter ids as ids
x_ids = list(self.amici_model.getParameterIds())
self.x_ids = x_ids
# mapping of parameters
if parameter_mapping is None:
# use identity mapping for each condition
parameter_mapping = create_identity_parameter_mapping(
amici_model, len(edatas)
)
self.parameter_mapping = parameter_mapping
# If supported, enable `guess_steadystate` by default. If not
# supported, disable by default. If requested but unsupported, raise.
if (
self.guess_steadystate is not False
and self.amici_model.nx_solver_reinit > 0
):
if self.guess_steadystate:
raise ValueError(
"Steadystate prediction is not supported "
"for models with conservation laws!"
)
self.guess_steadystate = False
if (
self.guess_steadystate is not False
and self.amici_model.getSteadyStateSensitivityMode()
== amici.SteadyStateSensitivityMode.integrationOnly
):
if self.guess_steadystate:
raise ValueError(
"Steadystate guesses cannot be enabled "
"when `integrationOnly` as "
"SteadyStateSensitivityMode!"
)
self.guess_steadystate = False
if self.guess_steadystate is not False:
self.guess_steadystate = True
if self.guess_steadystate:
# preallocate guesses, construct a dict for every edata for which
# we need to do preequilibration
self.steadystate_guesses = {
"fval": np.inf,
"data": {
iexp: {}
for iexp, edata in enumerate(self.edatas)
if len(edata.fixedParametersPreequilibration)
},
}
# optimization parameter names
if x_names is None:
# use ids as names
x_names = x_ids
self.n_threads = n_threads
self.fim_for_hess = fim_for_hess
self.amici_object_builder = amici_object_builder
self.amici_reporting = amici_reporting
if calculator is None:
calculator = AmiciCalculator()
self.calculator = calculator
super().__init__(x_names=x_names)
# Custom (condition-specific) timepoints. See the
# `set_custom_timepoints` method for more information.
self.custom_timepoints = None
def get_config(self) -> dict:
"""Return basic information of the objective configuration."""
info = super().get_config()
info["x_names"] = self.x_names
info["model_name"] = self.amici_model.getName()
info["solver"] = str(type(self.amici_solver))
info["sensi_order"] = self.max_sensi_order
return info
def create_history(
self, id: str, x_names: Sequence[str], options: HistoryOptions
):
"""See `history.generate.create_history` documentation."""
# create different history types based on the inputs
if options.storage_file is None:
if options.trace_record:
return MemoryHistory(options=options)
else:
return CountHistory(options=options)
# replace id template in storage file
storage_file = options.storage_file.replace("{id}", id)
# evaluate type
suffix = Path(storage_file).suffix[1:]
# create history type based on storage type
if suffix in SUFFIXES_CSV:
return CsvAmiciHistory(
x_names=x_names, file=storage_file, options=options
)
elif suffix in SUFFIXES_HDF5:
return Hdf5AmiciHistory(id=id, file=storage_file, options=options)
else:
raise HistoryTypeError(suffix)
def initialize(self):
"""See `ObjectiveBase` documentation."""
super().initialize()
self.reset_steadystate_guesses()
self.calculator.initialize()
def __deepcopy__(self, memodict: dict = None) -> AmiciObjective:
import amici
other = self.__class__.__new__(self.__class__)
for key in set(self.__dict__.keys()) - {
"amici_model",
"amici_solver",
"edatas",
}:
other.__dict__[key] = copy.deepcopy(self.__dict__[key])
# copy objects that do not have __deepcopy__
other.amici_model = self.amici_model.clone()
other.amici_solver = self.amici_solver.clone()
other.edatas = [amici.ExpData(data) for data in self.edatas]
return other
def __getstate__(self) -> dict:
import amici
if self.amici_object_builder is None:
raise NotImplementedError(
"AmiciObjective does not support __getstate__ without "
"an `amici_object_builder`."
)
state = {}
for key in set(self.__dict__.keys()) - {
"amici_model",
"amici_solver",
"edatas",
}:
state[key] = self.__dict__[key]
_fd, _file = tempfile.mkstemp()
try:
# write amici solver settings to file
try:
amici.writeSolverSettingsToHDF5(self.amici_solver, _file)
except AttributeError as e:
e.args += (
"Pickling the AmiciObjective requires an AMICI "
"installation with HDF5 support.",
)
raise
# read in byte stream
with open(_fd, "rb", closefd=False) as f:
state["amici_solver_settings"] = f.read()
finally:
# close file descriptor and remove temporary file
os.close(_fd)
os.remove(_file)
state["AMICI_model_settings"] = amici.get_model_settings(
self.amici_model
)
return state
def __setstate__(self, state: dict) -> None:
import amici
if state["amici_object_builder"] is None:
raise NotImplementedError(
"AmiciObjective does not support __setstate__ without "
"an `amici_object_builder`."
)
self.__dict__.update(state)
# note: attributes not defined in the builder are lost
model = self.amici_object_builder.create_model()
solver = self.amici_object_builder.create_solver(model)
edatas = self.amici_object_builder.create_edatas(model)
_fd, _file = tempfile.mkstemp()
try:
# write solver settings to temporary file
with open(_fd, "wb", closefd=False) as f:
f.write(state["amici_solver_settings"])
# read in solver settings
try:
amici.readSolverSettingsFromHDF5(_file, solver)
except AttributeError as err:
if not err.args:
err.args = ("",)
err.args += (
"Unpickling an AmiciObjective requires an AMICI "
"installation with HDF5 support.",
)
raise
finally:
# close file descriptor and remove temporary file
os.close(_fd)
os.remove(_file)
self.amici_model = model
self.amici_solver = solver
self.edatas = edatas
self.apply_custom_timepoints()
amici.set_model_settings(
self.amici_model,
state["AMICI_model_settings"],
)
def check_sensi_orders(
self,
sensi_orders: tuple[int, ...],
mode: ModeType,
) -> bool:
"""See `ObjectiveBase` documentation."""
import amici
if not sensi_orders:
return True
sensi_order = max(sensi_orders)
# dynamically obtain maximum allowed sensitivity order
max_sensi_order = self.max_sensi_order
if max_sensi_order is None:
max_sensi_order = 1
# check whether it is ok to request 2nd order
sensi_mthd = self.amici_solver.getSensitivityMethod()
mthd_fwd = amici.SensitivityMethod_forward
if mode == MODE_FUN and (
self.amici_model.o2mode
or (sensi_mthd == mthd_fwd and self.fim_for_hess)
):
max_sensi_order = 2
# evaluate sensitivity order
return sensi_order <= max_sensi_order
def check_mode(self, mode: ModeType) -> bool:
"""See `ObjectiveBase` documentation."""
return mode in [MODE_FUN, MODE_RES]
def call_unprocessed(
self,
x: np.ndarray,
sensi_orders: tuple[int, ...],
mode: ModeType,
return_dict: bool = False,
edatas: Sequence[amici.ExpData] = None,
parameter_mapping: ParameterMapping = None,
amici_reporting: amici.RDataReporting | None = None,
):
"""
Call objective function without pre- or post-processing and formatting.
Returns
-------
result:
A dict containing the results.
"""
import amici
x_dct = self.par_arr_to_dct(x)
amici_reporting = (
self.amici_reporting
if amici_reporting is None
else amici_reporting
)
if amici_reporting is None:
if return_dict:
# Use AMICI full reporting if amici.ReturnDatas are returned
# and no other reporting mode was set
amici_reporting = amici.RDataReporting.full
else:
# Else, only ask amici to compute required quantities
amici_reporting = (
amici.RDataReporting.likelihood
if mode == MODE_FUN
else amici.RDataReporting.residuals
)
self.amici_solver.setReturnDataReportingMode(amici_reporting)
# update steady state
if (
self.guess_steadystate
and self.steadystate_guesses["fval"] < np.inf
):
for data_ix in range(len(self.edatas)):
self.apply_steadystate_guess(data_ix, x_dct)
if edatas is None:
edatas = self.edatas
if parameter_mapping is None:
parameter_mapping = self.parameter_mapping
ret = self.calculator(
x_dct=x_dct,
sensi_orders=sensi_orders,
mode=mode,
amici_model=self.amici_model,
amici_solver=self.amici_solver,
edatas=edatas,
n_threads=self.n_threads,
x_ids=self.x_ids,
parameter_mapping=parameter_mapping,
fim_for_hess=self.fim_for_hess,
)
nllh = ret[FVAL]
rdatas = ret[RDATAS]
# check whether we should update data for preequilibration guesses
if (
self.guess_steadystate
and nllh <= self.steadystate_guesses["fval"]
and nllh < np.inf
):
self.steadystate_guesses["fval"] = nllh
for data_ix, rdata in enumerate(rdatas):
self.store_steadystate_guess(data_ix, x_dct, rdata)
return ret
def par_arr_to_dct(self, x: Sequence[float]) -> dict[str, float]:
"""Create dict from parameter vector."""
return OrderedDict(zip(self.x_ids, x))
def apply_steadystate_guess(self, condition_ix: int, x_dct: dict) -> None:
"""
Apply steady state guess to `edatas[condition_ix].x0`.
Use the stored steadystate as well as the respective sensitivity (
if available) and parameter value to approximate the steadystate at
the current parameters using a zeroth or first order taylor
approximation:
x_ss(x') = x_ss(x) [+ dx_ss/dx(x)*(x'-x)]
"""
mapping = self.parameter_mapping[condition_ix].map_sim_var
x_sim = map_par_opt_to_par_sim(mapping, x_dct, self.amici_model)
x_ss_guess = [] # resets initial state by default
if condition_ix in self.steadystate_guesses["data"]:
guess_data = self.steadystate_guesses["data"][condition_ix]
if guess_data["x_ss"] is not None:
x_ss_guess = guess_data["x_ss"]
if guess_data["sx_ss"] is not None:
linear_update = (
guess_data["sx_ss"]
.transpose()
.dot(
(x_sim - guess_data["x"])[
np.asarray(self.edatas[condition_ix].plist)
]
)
)
# limit linear updates to max 20 % elementwise change
if (linear_update / (x_ss_guess + np.spacing(1))).max() < 0.2:
x_ss_guess += linear_update
self.edatas[condition_ix].x0 = tuple(x_ss_guess)
def store_steadystate_guess(
self,
condition_ix: int,
x_dct: dict,
rdata: amici.ReturnData,
) -> None:
"""
Store condition parameter, steadystate and steadystate sensitivity.
Stored in steadystate_guesses if steadystate guesses are enabled for
this condition.
"""
if condition_ix not in self.steadystate_guesses["data"]:
return
preeq_guesses = self.steadystate_guesses["data"][condition_ix]
# update parameter
condition_map_sim_var = self.parameter_mapping[
condition_ix
].map_sim_var
x_sim = map_par_opt_to_par_sim(
condition_map_sim_var, x_dct, self.amici_model
)
preeq_guesses["x"] = x_sim
# update steadystates
preeq_guesses["x_ss"] = rdata["x_ss"]
preeq_guesses["sx_ss"] = rdata["sx_ss"]
def reset_steadystate_guesses(self) -> None:
"""Reset all steadystate guess data."""
if not self.guess_steadystate:
return
self.steadystate_guesses["fval"] = np.inf
for condition in self.steadystate_guesses["data"]:
self.steadystate_guesses["data"][condition] = {}
def apply_custom_timepoints(self) -> None:
"""Apply custom timepoints, if applicable.
See the `set_custom_timepoints` method for more information.
"""
if self.custom_timepoints is not None:
for index in range(len(self.edatas)):
self.edatas[index].setTimepoints(self.custom_timepoints[index])
def set_custom_timepoints(
self,
timepoints: Sequence[Sequence[float | int]] = None,
timepoints_global: Sequence[float | int] = None,
) -> AmiciObjective:
"""
Create a copy of this objective that is evaluated at custom timepoints.
The intended use is to aid in predictions at unmeasured timepoints.
Parameters
----------
timepoints:
The outer sequence should contain a sequence of timepoints for each
experimental condition.
timepoints_global:
A sequence of timepoints that will be used for all experimental
conditions.
Returns
-------
The customized copy of this objective.
"""
if timepoints is None and timepoints_global is None:
raise KeyError("Timepoints were not specified.")
amici_objective = copy.deepcopy(self)
if timepoints is not None:
if len(timepoints) != len(amici_objective.edatas):
raise ValueError(
"The number of condition-specific timepoints `timepoints` "
"does not match the number of experimental conditions.\n"
f"Number of provided timepoints: {len(timepoints)}. "
"Number of experimental conditions: "
f"{len(amici_objective.edatas)}."
)
custom_timepoints = timepoints
else:
custom_timepoints = [
copy.deepcopy(timepoints_global)
for _ in range(len(amici_objective.edatas))
]
amici_objective.custom_timepoints = custom_timepoints
amici_objective.apply_custom_timepoints()
return amici_objective
def check_gradients_match_finite_differences(
self, x: np.ndarray = None, *args, **kwargs
) -> bool:
"""Check if gradients match finite differences (FDs).
Parameters
----------
x: The parameters for which to evaluate the gradient.
Returns
-------
bool
Indicates whether gradients match (True) FDs or not (False)
"""
if x is None and "petab_problem" in dir(self.amici_object_builder):
x = self.amici_object_builder.petab_problem.x_nominal_scaled
x_free = self.amici_object_builder.petab_problem.x_free_indices
return super().check_gradients_match_finite_differences(
*args, x=x, x_free=x_free, **kwargs
)